J. Chem. Software, Vol. 7, No. 4, p. 179–190 (2001)

分子の構造活性相関解析のための ニューラルネットワークシミュレータ: Neco(NEural network simulator for structure-activity COrrelation of molecules)の開発(6) 機械構造用Cr-Mo鋼、Ni鋼、Ni-Cr鋼および Ni-Cr-Mo鋼の力学的性質の推定

福田 朋子^{a,b}, 田島 澄恵^c, 松本 高利^d, 長嶋 雲兵^e*, 細矢 治夫^c, 青山 智夫^f

^a日本女子大学家政学部生活芸術学科, 〒112-8681 文京区目白台 2-8-1
 ^b(株)ベストシステムズ, 〒305-0035 つくば市松代4丁目 15-2-1-204
 ^cお茶の水女子大学人間文化研究科, 〒112-8610 文京区大塚 2-1-1
 ^d物質工学工業技術研究所, 〒305-8565 つくば市東 1-1
 ^e産業技術融合領域研究所, 〒305-8562 つくば市東 1-1-4
 ^f宮崎大学工学部, 〒889-2192 宮崎市学園木花台西1-1
 **e-mail: u.nagashima@aist.go.jp*

(Received: September 22, 2000; Accepted for publication: January 10, 2001; Published on Web: August 20, 2001)

機械構造用材料の力学的性質の測定精度および効率を向上させるために、3層 パーセプトロン型のニューラルネットを用いて、機械構造用 Cr-Mo 鋼、Ni 鋼、Ni-Cr 鋼および Ni-Cr-Mo 鋼の降伏点、引っ張り強さ、伸び、絞り、衝撃値、硬さについ ての推定を行った。機械構造用 Cr-Mo 鋼、Ni 鋼、Ni-Cr 鋼および Ni-Cr-Mo 鋼の力 学的性質は、伸びの推定を除けば、その化学的成分のみを入力することで、ほぼ実 験精度内での推定が可能であることがわかった。

 $\neq - \nabla - F$: Yield Point, Tensile Strength, Elongation Percentage, Diaphragm, Impulsive Force, Hardness, Cr-Mo Steel, Ni Steel, Ni-Cr Steel, Ni-Cr-Mo Steel, Property Estimation, Neural Network

1 はじめに

機械構造用鋼材として様々な金属原子を混合した高機能性材料が開発され、また広く使われ てきており、従来の鋼材にはない新しい性質を利用した新たな工作機械が開発されており、鋼 材の力学的性質の精密測定技術の開発が進んでいる。機械構造材としての鉄鋼素材の力学的性質は、JIS 等[1]で細かく規定されているものの、実際の製品の性質の測定は様々な要因により ばらつきが大きく、また計測に大きなコストを必要とする。特に機械構造材としての鉄鋼素材 の重要な性質である、降伏点、引っ張り強さ、伸び、絞り、衝撃値については、Table 1 に示す ように JIS でも下限が定められているだけである。それらの性質の実際の測定に関しては、測 定環境要因を含めた様々な要因により 20%程度の誤差を含むことがよく知られている。

JIS 記号	降伏点	引張強度	伸び (%)	絞り(%)	衝撃値	硬さ(Hb)
	(kgf/mm ²)	(kgf/mm^2)			(kgf·mm/cm ³)	
SCM432	>75	>90	>16	>50	>9	$255 \sim 321$
SCM430	>70	>85	>18	>55	>11	$241\!\sim 293$
SCM435	>80	>95	>15	>50	>8	$269 \sim 321$
SCM440	>85	>100	>12	>45	>6	$285 \sim 341$
SCM445	>90	>105	>12	>40	>4	$302 \sim 363$
SNC236	>60	>75	>22	>50	>12	$212 \sim 255$
SNC631	>70	>85	>18	>50	>12	$248 \sim 302$
SNC836	>80	>95	>15	>45	> 8	$269 \sim 321$
SNCM431	>70	>85	>20	>55	>10	$248 \sim 302$
SNCM625	>85	>95	>18	>50	> 8	$269 \sim 321$
SNCM630	>90	>110	>15	>45	> 8	$302 \sim 352$
SNCM240	>80	>90	>17	>50	>7	$255 \sim 311$
SNCM7	>90	>100	>15	>45	>5	$293 \sim 352$
SNCM439	>90	>100	>16	>45	>7	$293 \sim 352$
SNCM447	>95	>105	>14	>40	>7	$302 \sim 363$

Table 1. JIS table of Mechanical properties Cr-Mo Steel, Ni Steel, Ni-Cr Steel, Ni-Cr-Mo Steel. [1]

本研究では、鉄鋼素材の力学的性質の精密測定を効率よく行うために、素材の化学的成分か ら力学的性質の推定が可能であるかを調べることとした。素材の化学的成分と力学的な性質と の関係は、非線形であることは窺えるものの、その具体的な関係は明らかではない。ために、 そこで、説明変数の組と目的変数間の非線形関係の自動生成機能を持つ3層パーセプトロン型 ニューラルネットワークを用いて、Table 2に示す機械構造用 Cr-Mo 鋼、Ni 鋼、Ni-Cr 鋼および Ni-Cr-Mo 鋼の化学的成分と力学的性質の関係を学習させ、化学成分から力学的性質を推定する ことを試みた。

このような方法を用いることで鋼材の力学的性質が実験精度内で見積もることができ、さら に見積もり時間の大幅な短縮の可能性があることがわかったので報告する。

2 方法

パーセプトロンには幅を持たせた値の学習ができないため、Table 2 に示した各元素の成分量の単純平均値とTable 1 に示した力学的性質を 3 層パーセプトロン型ニューラルネットに学習さ

JIS 記号	С	Mn	Ni	Cr	Мо
SCM432	$0.27 \sim 0.37$	$0.30 \sim 0.60$		$1.00 \sim 1.50$	$0.15 \sim 0.30$
SCM430	$0.28 \sim 0.33$	$0.60 \sim 0.85$		$0.90 \sim 1.20$	$0.15\!\sim 0.30$
SCM435	$0.33 \sim 0.38$	$0.60 \sim 0.85$		$0.90 \sim 1.20$	$0.15\!\sim 0.30$
SCM440	$0.38 \sim 0.43$	$0.60 \sim 0.85$		$0.90 \sim 1.20$	$0.15{\sim}0.30$
SCM445	$0.43 \sim 0.48$	$0.60 \sim 0.85$		$0.90 \sim 1.20$	$0.15{\sim}0.30$
SNC236	$0.32 \sim 0.40$	$0.50 \sim 0.80$	$1.00{\sim}1.50$	$0.50 \sim 0.90$	
SNC631	$0.27 \sim 0.35$	$0.35{\sim}0.65$	$2.50 \sim 3.00$	$0.60{\sim}1.00$	
SNC836	$0.32 \sim 0.40$	$0.35{\sim}0.65$	$3.00 \sim 3.50$	$0.60{\sim}1.00$	
SNCM431	$0.27 \sim 0.35$	$0.60 \sim 0.90$	$1.60\sim2.00$	$0.60{\sim}1.00$	$0.15{\sim}0.30$
SNCM625	$0.20 \sim 0.30$	$0.35{\sim}0.60$	$3.00 \sim 3.50$	$1.00{\sim}1.50$	$0.15{\sim}0.30$
SNCM630	$0.25 \sim 0.35$	$0.35{\sim}0.60$	$2.50{\sim}3.50$	$2.50 \sim 3.50$	$0.50 \sim 0.70$
SNCM240	$0.38 \sim 0.43$	$0.70 \sim 1.00$	$0.40 \sim 0.70$	$0.40 \sim 0.65$	$0.15{\sim}0.30$
SNCM7	$0.43 \sim 0.48$	$0.70 \sim 1.00$	$0.40 \sim 0.70$	$0.40 \sim 0.65$	$0.15{\sim}0.30$
SNCM439	$0.36{\sim}0.43$	$0.60 \sim 0.90$	$1.60\sim2.00$	$0.60{\sim}1.00$	$0.15{\sim}0.30$
SNCM447	$0.44{\sim}0.50$	$0.60 \sim 0.90$	$1.60{\sim}2.00$	$0.60{\sim}1.00$	$0.15\!\sim 0.30$

Table 2. Amount of chemical component in Cr-Mo steel, Ni steel, Ni-Cr steel, Ni-Cr-Mo steel.(%) [1]

せて各元素量と力学的性質との関係の自動抽出を行った。もちいたニューラルネットワークシ ミュレータは、我々が開発を進めている Neco[2-6] を用いた。

入力に用いた各サンプルの成分値を Table 3 に示す。Table 2 において"-"で示されている 部分の値には、0.0001 を仮定した。それぞれの力学的性質の推定には、サンプルのうち一つを 除いたデータの組を学習したパーセプトロン型ニューラルネットを用いて、除いたサンプルの データを予測すること、すなわち leave-one-out テストにより学習結果の妥当性を検討した。

パーセプトロン型のニューラルネットのネットワーク構造は、入力データとして各元素 C, Mn, Ni, Cr, Mo.の含有量の平均値、および促進パラメータ(常に 1.0)の5つに対応する入力層 ニューロン数5、中間層ニューロン数5、出力層ニューロン数1とした。中間層ニューロンの数 は、再構築学習法を用いてそれぞれの性質に関して最適化したが、すべて5つのニューロン数 となった。学習誤差のしきい値は、0.0008である。

3 計算結果

3.1 降伏点の推定

降伏点の計算結果を Table 4 と Figure 1 に示した。降伏点の推定は、非常に良好であり、相対 誤差の絶対値も最大で約9%程度の誤差となっている。Figure 1 に示すように、実測と計算の相 関も高い。回帰直線は、Y=1.0543X-2.3337 であり、傾きがほぼ1、切片も-2.3 程度である。実 測の絶対値がほぼ 100 であることを考えると、十分な精度で推定ができているといえよう。相

JIS 記号	С	Mn	Ni	Cr	Mo
SCM432	0.32	0.45	0.0001	1.25	0.225
SCM430	0.305	0.725	0.0001	1.05	0.225
SCM435	0.355	0.725	0.0001	1.05	0.225
SCM440	0.405	0.725	0.0001	1.05	0.225
SCM445	0.455	0.725	0.0001	1.05	0.225
SNC236	0.36	0.65	1.25	0.7	0.0001
SNC631	0.31	0.5	2.75	0.8	0.0001
SNC836	0.36	0.5	3.25	0.8	0.0001
SNCM431	0.31	0.75	1.8	0.8	0.225
SNCM625	0.25	0.475	3.25	1.25	0.225
SNCM630	0.3	0.475	3	3	0.6
SNCM240	0.405	0.85	0.55	0.525	0.225
SNCM7	0.455	0.85	0.55	0.525	0.225
SNCM439	0.395	0.75	1.8	0.8	0.225
SNCM447	0.47	0.75	1.8	0.8	0.225

Table 3. Averaged content of transition metal elements used as input.

Figure 1. Correlation of observed values and estimated values of yield point.

JIS 記号	降伏点(実測)	降伏点(計算)	相対誤差(%)
SCM432	75	77.56	-3.41333
SCM430	70	69.66	0.485714
SCM435	80	79.21	0.9875
SCM440	85	86.19	-1.4
SCM445	90	87.53	2.744444
SNC236	60	63.18	-5.3
SNC631	70	68.73	1.814286
SNC836	80	79.89	0.1375
SNCM431	70	76.15	-8.78571
SNCM625	85	85.67	-0.78824
SNCM630	90	108.99	-21.1
SNCM240	80	80.97	-1.2125
SNCM7	90	90.22	-0.24444
SNCM439	90	87.11	3.211111
SNCM447	95	99.68	-4.92632

Table 4. Observed and estimated yield point with relative error.

関係数も R²=0.799 でありばらつきが小さいことを示している。

引張強[kgf/mm2]

Figure 2. Correlation of observed values and estimated values of tensile strength.

3.2 引っ張り強度の推定

引っ張り強度の計算結果を Table 5 と Figure 2 に示した。降伏点の推定同様、引っ張り強度の 推定も、非常に良好であり、相対誤差の絶対値も最大が約 7%の誤差となっている。 Figure 2 に示すように、実測と計算の相関も高い。回帰直線は、Y=0.9801X+3.2065 であり、 傾きがほぼ1、切片も3.2 程度である。実測の絶対値がほぼ100 であることを考えると、十分 な精度で推定ができているといえよう。相関係数も R²=0.92 であり降伏点の推定以上にばらつ きが小さいことを示している。

JIS 記号	引張強度 (実測)	引張強度(計算)	相対誤差(%)
SCM432	90	94.29	-4.76667
SCM430	85	85.04	-0.04706
SCM435	95	94.25	0.789474
SCM440	100	101.32	-1.32
SCM445	105	103.16	1.752381
SNC236	75	80.1	-6.8
SNC631	85	84.85	0.176471
SNC836	95	93.5	1.578947
SNCM431	85	86.71	-2.01176
SNCM625	95	97.99	-3.14737
SNCM630	110	117.33	-6.66364
SNCM240	90	91.22	-1.35556
SNCM7	100	99.41	0.59
SNCM439	100	98.94	1.06
SNCM447	105	106.76	-1.67619

Table 5. Observed and estimated tensile strength with relative error.

3.3 伸びの推定

伸びの計算結果を Table 6 と Figure 3 に示した。伸びの推定は、降伏点および引っ張り強度の 推定に比べ相対誤差が大きい。相対誤差の絶対値の最大が約 32% であり、有効数字にして 1 桁程 度の推定精度でしかない。 Figure 3 に示すように、実測と計算の相関も降伏点および引っ張り 強度の推定に比べ低い。回帰直線は、Y=0.9042X+0.294 と y=x に近いが、相関係数が R²=0.3848 でありばらつきが大きく推定精度が悪いことを示している。

3.4 絞りの推定

伸びの計算結果を Table 7 と Figure 4 に示した。絞りの推定は、降伏点および引っ張り強度の 推定と同様、非常に良好であり、相対誤差の絶対値の最大が 17%の誤差である。Figure 4 に示 すように、実測と計算の相関も高い。

JIS 記号	伸び (実測)	伸び(計算)	相対誤差(%)
SCM432	16	10.89	31.9375
SCM430	18	20.77	-15.3889
SCM435	15	13.63	9.133333
SCM440	12	13.07	-8.91667
SCM445	12	9.87	17.75
SNC236	22	16.84	23.45455
SNC631	18	18.25	-1.38889
SNC836	15	17.7	-18
SNCM431	20	23.95	-19.75
SNCM625	18	16.98	5.666667
SNCM630	15	7.8	48
SNCM240	17	15.9	6.470588
SNCM7	15	16.37	-9.13333
SNCM439	16	14.5	9.375
SNCM447	14	16.37	-16.9286

Table 6. Observed and estimated elongation percentage with relative error.

Figure 3. Correlation of observed values and estimated values of elongation percentage.

JIS 記号	絞り(実測)	絞り(計算)	相対誤差(%)
SCM432	50	46.05	7.9
SCM430	55	54.49	0.927273
SCM435	50	50.57	-1.14
SCM440	45	44.22	1.733333
SCM445	40	41.74	-4.35
SNC236	50	49.9	0.2
SNC631	50	50.2	-0.4
SNC836	45	44.05	2.111111
SNCM431	55	51.89	5.654545
SNCM625	50	52.77	-5.54
SNCM630	45	36.96	17.86667
SNCM240	50	50.51	-1.02
SNCM7	45	44.09	2.022222
SNCM439	45	47.34	-5.2
SNCM447	40	37.85	5.375

Table 7. Observed and estimated diaphragm with relative error.

Figure 4. Correlation of observed values and estimated values of diaphragm.

3.5 衝撃値の推定

伸びの計算結果を Table 8 と Figure 5 に示した。衝撃値の推定は、SNCM630 が 99%の誤差となるが、それを除くと良好である。Figure 5 をみると、ばらつきも SNCM630 を除くと比較的小さいことがわかる。SNCM630 の特異的な悪さに関しては現在調査中である。

JIS 記号	衝撃値(実測)	衝撃値(計算)	相対誤差(%)
SCM432	9	7.63	15.22222
SCM430	11	10.71	2.636364
SCM435	8	8.23	-2.875
SCM440	6	5.68	5.333333
SCM445	4	4.61	-15.25
SNC236	12	12.37	-3.08333
SNC631	12	10.59	11.75
SNC836	8	8.37	-4.625
SNCM431	10	9.23	7.7
SNCM625	8	10.82	-35.25
SNCM630	8	0.0102	99.8725
SNCM240	7	7.11	-1.57143
SNCM7	5	4.76	4.8
SNCM439	7	7.43	-6.14286
SNCM447	6	5.1	15

Table 8. Observed and estimated impulsive force with relative error.

Figure 5. Correlation of observed values and estimated values of impulsive force.

3.6 硬さの推定

硬さの計算結果を Table 9 と Figure 6 に示した。硬さの推定は、良好であり、相対誤差の絶対 値も最大が約 11%の誤差となっている。Figure 6 に示すように、実測と計算の相関も高い。回 帰直線は、Y=0.8591X+47.414 であり切片が大きいが、実測の絶対値がほぼ 300 であることを 考えると、良好な精度で推定ができている。相関係数は、R²=0.8067 とほぼ 0.8 でありばらつき も小さい。

JIS 記号	硬さ(実測)	硬さ(計算)	相対誤差(%)
SCM432	273	284.05	4.047619
SCM430	267	259.8	-2.69663
SCM435	295	294.51	-0.1661
SCM440	313	316.9	1.246006
SCM445	332.5	322.94	-2.87519
SNC236	233.5	259.92	11.31478
SNC631	275	266.07	-3.24727
SNC836	295	296.14	0.386441
SNCM431	275	297.48	8.174545
SNCM625	295	319.44	8.284746
SNCM630	327	336.92	3.033639
SNCM240	283	287.37	1.54417
SNCM7	322.5	322.34	-0.04961
SNCM439	322.5	311.32	-3.46667
SNCM447	332.5	351.85	5.819549

Table 9. Observed and estimated hardness with relative error.

Figure 6. Correlation of averaged observed values and estimated values of hardness.

硬さは、Table 2 に示されているように、ある幅を持っている。そのため、実測値の幅と計算 値を Figure 7 に示したが、計算結果は、すべてその範囲内に入っていることが分かる。

機械構造用CrMo・NiCr・NiCrMo鋼硬さ[Hb]

Figure 7. Observed and estimated hardness of Cr-Mo, Ni, Ni-Cr, and Ni-Cr-Mo steels.

4 まとめ

機械構造用材料の力学的性質の測定精度および効率の向上を目的に、学習機能付き3層パーセ プトロン型のニューラルネットを用いて、機械構造用Cr-Mo鋼、Ni鋼、Ni-Cr鋼およびNi-Cr-Mo 鋼の降伏点、引っ張り強さ、伸び、絞り、衝撃値、硬さについての推定を行った。機械構造用 Cr-Mo鋼、Ni鋼、Ni-Cr鋼およびNi-Cr-Mo鋼の力学的性質は、伸びの推定を除けば、その化学 的成分のみを入力することで、ほぼ20%程度の誤差範囲内で推定ができており、実験精度内で の推定が可能であることがわかった。

ニューラルネットワークを用いた推定は、実時間でたかだか1分以下であるので、機械構造 用 Cr-Mo 鋼、Ni 鋼、Ni-Cr 鋼および Ni-Cr-Mo 鋼の力学的性質の推定を従来に比べ格段に短い 時間で実行できる可能性があることが判った。

今後の課題としては、さらに多量のデータを基礎に学習精度を向上させ、推定精度をより高 くする必要がある。また、疲労特性などの化学成分との関係が明らかでない性質に関してニュー ラルネットワークの物性推算の可能性を検証してみたい。

参考文献

- [1] (編)社団法人日本金属学会,改訂2版 金属データブック,丸善(1984).
- [2] 井須芳美, 長嶋雲兵, 細矢治夫, 青山智夫, J. Chem. Software, 2, 76 (1994).
- [3] 井須芳美, 長嶋雲兵, 細矢治夫, 大島茂, 坂本曜子, 青山智夫, J. Chem. Software, 3, 1 (1996).
- [4] Isu, Y., Nagashima, U., Aoyama, T., Hosoya, H., J. Chem. Info. Comp. Sci., 36, 286 (1996).

- [5] 藤谷康子,小野寺光永,井須芳美,長嶋雲兵,細矢治夫,青山智夫, J. Chem. Software, 4, 19 (1998).
- [6] 田島澄恵, 松本高利, 田辺和俊, 長嶋雲兵, 細矢治夫, 青山智夫, J. Chem. Software, 6, 115 (2000).

[7] 福田朋子,田島澄恵,斎藤久登,長嶋雲兵,細矢治夫,青山智夫, J. Chem. Software, 7, 115 (2001).

Development of a Neural Network Simulator for Structure-Activity Correlation of Molecules: Neco (6) - Estimation of Mechanical Properties of Cr-Mo Steel, Ni Steel, Ni-Cr Steel and Ni-Cr-Mo Steel -

Tomoko FUKUDA^{a,b}, Sumie TAJIMA^c, Takatoshi MATSUMOTO^d, Umpei NAGASHIMA^e*, Haruo HOSOYA^c and Tomoo AOYAMA^f

^aDepartment of Life Arts, Faculty of Home Economics, Japan Women's University 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan ^bBestsystems Co. Ltd.
4-15-2-1-204 Matsushiro, Tsukuba, Ibaraki 305-0035, Japan
^cDepartment of Human Culture and Sciences, Graduate School of Ochanomizu University 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan ^dNational Institute of Materials and Chemical Research 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan ^eNational Institute for Advanced Interdisciplinary Research 1-1-4 Higashi, Tsukuba, Ibaraki 305-8562, Japan ^fFaculty of Technology, Miyazaki University Gakuenkihanadai Nishi, Miyazaki 889-2192, Japan **e-mail: u.nagashima@aist.go.jp*

In order to estimate mechanical properties of high tension steels for machine tools: Cr-Mo steel, Ni steel, Ni-Cr steel and Ni-Cr-Mo steel, we applied property prediction by a perceptron type neural network. It was found that six mechanical properties: yield point, tensile strength, diaphragm, impulsive force and hardness are predictable within experimental error, almost 20%, using only the amount of C, Mn, Ni, Cr and Mo in the steels.

Keywords: Yield Point, Tensile Strength, Elongation Percentage, Diaphragm, Impulsive Force, Hardness, Cr-Mo Steel, Ni Steel, Ni-Cr Steel, Ni-Cr-Mo Steel, Property Estimation, Neural Network