エストロゲン受容体のアミノ酸変異によるエストラジオール結合エネルギーの変化

前田 紘輔, Alexander SCHUG, 渡邉 博文, 福澤 薫, 望月 祐志, 中野 達也, 田中 成典


Return

1 はじめに

近年、ヒトゲノムの解読完了宣言がなされ、これらゲノム計画の後に続く研究段階として、ポストゲノム時代に入ったと言われている。ポストゲノムとは、ゲノム情報に基づき、遺伝子の機能や発現、その後に続くタンパク質の機能やそれらのネットワークなどを研究する段階のことである。これら解読されたゲノム情報から、新しい研究分野の誕生や従来の研究分野間の連携などが起こり、特に医学や薬学への応用に大きな期待が寄せられている。
研究分野の連携として、特に情報科学が重要である。膨大なゲノム情報を扱い研究を進めていくには、従来の研究手法のみでは不十分で、情報科学と分子生物学のより密接な連携が重要になってくる。このような状況において、現在NR−SX計画という研究計画も提唱されている[1]。この計画は核内受容体(Nuclear Receptor ; NR)のNRとSyndrome XのSXから由来している。Syndrome Xとは肥満、糖尿病、高脂血症、高血圧など、相互に関連した一連の症状と疾患の総称であり、最近ではメタボリックシンドロームとも呼ばれる。遺伝子の発現制御に関連している核内受容体と、それらSyndrome Xとの関係に対する研究が計画されている。分子生物学の対象とする領域が、より広範に、またより小さいミクロな領域に展開していくには、情報科学や他の様々な分野との相互作用が求められている。そして、研究背景としてもう1つ重要なことは、コンピュータリソースの充実、計算化学の進歩である。
量子化学の分野において、フラグメント分子軌道法(Fragment Molecular Orbital method ; FMO法)という手法の誕生によって、巨大分子であるタンパク質の電子状態や分子軌道の計算を行うことが現実味を帯びてきた。従来の量子化学の手法では、タンパク質のような巨大分子はコンピュータリソースの制限を受け、膨大な計算時間がかかることで事実上不可能であった。しかし北浦、中野らによって開発されたFMO法によって、ほとんど計算精度を落とすことなく大幅な計算時間の短縮が実現可能となった[2 - 6]。タンパク質などの生体分子においても、電子状態は重要であり、量子化学計算の必要性は明らかである。例えば、分子間相互作用や化学反応過程の研究においては分子の電子状態が重要となる。
本研究で具体的に注目しているのは、先にも述べた遺伝子の転写を調節するタンパク質であるNRファミリーであり、これらはリガンドが受容体に結合することで、核内に移動し転写調節を行う。これらNRの中には、調節の標的となる遺伝子がシトクロムP450などの薬物代謝タンパク質であるものもあり、医学や薬学の分野で、NRに結合する分子は薬のターゲットとして重要であり、そのメカニズムの解明が進められている。薬の開発には従来、莫大な費用と多大な時間を要するが、計算化学によるドラッグデザインによりその問題を改善することができる。
本研究では、核内受容体の1つであるエストロゲン受容体(Estrogen Receptor ; ER)に注目した。エストラジオール(Estradiol ; EST,Figure 1)は女性ホルモンであるエストロゲンの一種である。この受容体に結合するリガンドは複数存在することが確認されている。本来結合するはずのESTなど天然のエストロゲンに加えて、骨粗鬆症治療薬であるラロキシフェンや、ジエチルスチルベステロールなどが結合する。
これら以外にも、エストロゲンに似た化学物質として受容体に結合してしまい人体に悪影響を及ぼす環境ホルモン(内分泌撹乱物質)があり、問題視されている。そこで、ESTのERに対する結合に関する微視的メカニズムの解明に向けて計算化学の側面から研究を行った。具体的には、ERのアミノ酸残基を変異させることでESTのERに対する結合能がどのように変化するかを調べた。


Figure 1. Molecular structure of 17b-Estradiol (EST).

2 エストロゲン受容体(Estorogen Receptor ; ER)の構造

ERには2つのサブタイプERaとERbがあることがわかっているが、本研究ではERa(以下ER)の構造を用いた。立体構造としてエストロゲンの中で最も生理活性が高いESTとERのリガンド結合ドメイン(Ligand Binding Domain ; LBD)との複合体を用いる。ERは全長595残基で6つのドメインからなっているが、ここでは、LBDに注目する。これはリガンドであるESTのERに対する結合能を見るために重要であるとともに、Protein Data Bank(PDB)に登録されている複合体の立体構造がほとんどLBDとの複合体であるからである。
量子化学計算を行うには、立体構造が初期構造として必要である。そこで本研究では、多くのタンパク質の立体構造が登録されているPDBによりERの立体構造を検索した。検索された22個の立体構造から、ESTとERの複合体としてPDBIDが1QKUである立体構造を対象として選んだ。
次に、本研究の計算に用いるために、PDBからダウンロードしてきた立体構造にいくつかの処理を行った。
まずは使う複合体の選択である。PDB IDの1QKUとしてA、B、Cの3つの複合体鎖が登録されていた。これらの中から、最もペプチド鎖が長く、欠損しているアミノ酸残基のないA鎖を選択した。そしてA鎖の立体構造のデータに水素付加を行い水素のみを構造最適化した。この作業にはソフトウェアMOE(The Molecular Operating Environment)[7]を用いた。また立体構造には水分子が多く含まれていたが、ESTから6A以内の範囲には水分子は存在していなかったため、水分子はESTとERの結合に直接関与しないと考え、全て除去した。最終的に計算に用いた立体構造は全体で247残基であるERのLBDとESTからなり、水分子は含まれていない(Figure 2)。


Figure 2. Molecular structure of EST-ER complex (wild-type, PDB-ID:1QKT).

3 計算方法

本研究では、量子化学計算としてFMO法を用いた一点計算を行った[8]。エネルギー計算においては、HF(Hartree-Fock)法とMP2(Moller-Plesset 2次摂動)法[6]を用い、基底関数はSTO-3Gを用いた。また、1つのフラグメントに対して2つのアミノ酸残基を割り当てて計算した。計算用、可視化用ソフトウェアとして、FMO法に対応した解析ソフトABINIT-MPとFMO計算結果の可視化ソフトBioStation Viewer(以下のURL[9]からダウンロード可能;但し、本解析ではJST-CRESTプロジェクト開発バージョンを使用)を用いた。また、タンパク質のアミノ酸変異や表示、構造最適化計算等の操作を行える総合開発環境であるMOEを用いた。計算機としては、Pentium4 3.2GHzクラスターならびにOpteron 2.0GHzクラスターを用いた(Pentium4クラスターは6ノード、Opteronクラスターは8ノード)。
まず、PDBから計算に用いるESTとERとの複合体の立体構造をダウンロードした。次に、ダウンロードしてきた立体構造に、水素付加等、先に述べた処理を行った。水素付加された立体構造に対して、アミノ酸変異を行い、配座解析を行って側鎖の位置を決めた。その後に、変異前の立体構造と変異後の立体構造に対してそれぞれ構造最適化を行った。但し、構造最適化はそれぞれの立体構造の、変異対象のアミノ酸残基とESTのみに対して同時に行った。構造最適化計算にはMMFF94x力場[10]を用いた。
次に、これらの立体構造を入力データとして、FMO計算を行った。FMO計算により、福澤らの定義[11]に従って結合エネルギー(DE)を計算した。

ここで、EcomplexEligandEreceptorはそれぞれ、ESTとERとの複合体、ESTのみ、ERのみに対するエネルギーである。
また、変異体DE(mutant)と野生型(wild-type;アミノ酸変異をさせてない構造)DE(wild-type)の結合エネルギー差(DDE)を以下のように定義した。

このDDEを用いて結合能の変化を評価した。
ERの変異については全て1アミノ酸変異体を考察した。どこの位置のアミノ酸をどのようなアミノ酸に変異させるかについては、以下の6つの1アミノ酸変異を選んだ。
E353Q、G521A、H524A、H524Q、L525A、M528A
これら6つの変異に関するアミノ酸の性質の変化と特徴はTable 1に示されている。変異の基準としては以下の2つを採用した。
1つ目の基準はESTから3A以内に原子があるアミノ酸残基を変異の対象とする(Figure 3)。


Figure 3. Five amino-acid residues surrounding EST.

2つ目の基準は、Herynkら[12]がまとめている1アミノ酸変異の実験データ(Table 2)を参照した。

Table 1. Amino acid mutations employed in the present calculations and change of the total charge of the complex after the mutations. The total charge of the wild-type complex is +6.
mutationchange in the property of mutated amino acid residuechange of total charge of the complex after the mutation
E353QAcidic®Polar+1
G521ANonpolar®Nonpolar0
H524ABasic®Nonpolar-1
H524QBasic®Polar-1
L525ANonpolar®Nonpolar0
M528ANonpolar®Nonpolar0

これら2つの基準をともに満たすようなアミノ酸変異を対象とした。

4 結果

4. 1 計算結果

Figure 4の左側の図は、HF法で計算し、DDEを求めたものである。ここでDE(wild-type)が異なるのは、変異アミノ酸とESTに対する構造最適化により構造がPDBのものとは若干ずれるためである。このグラフからE353Q、H524A、H524Qの、それぞれ3つのアミノ酸変異の場合で、DDEが正の値を示した。これはアミノ酸を変異させることで負であるDEの絶対値が小さくなり、結合が不安定化したことを示している。G521Aもわずかではあるが、正の値を示している(約0.6kcal/mol)。一方、L525Aは負の値を示した、つまり変異によって負であるDEの絶対値が大きくなり、結合が安定化したことを示している。またM528Aに関してはグラフでは確認できないが、正の値を示しており値は約0.1 kcal/molであった。


Figure 4. Calculation results for the binding energy differences by point mutations by the HF and MP2 methods.

しかし、E353Q、H524A、H524Qの3つの変異に比べて、残り3つの変異は変化のスケールが小さい。そこで、HF法ではなく、電子相関を取り入れたMP2法[6]で同様の計算を行った。その結果がFigure 4の右側の図である。MP2法では、E353Q、H524A、H524Qのそれぞれ3つのアミノ酸変異の場合ではHF法の図と同様にDDEが正の値を示した。つまり、アミノ酸変異により結合が不安定化したことを示している。特にH524A、H524Qに関しては、HF法に比べてMP2法の方が絶対値がほぼ2倍になっていた。
一方G521Aの変異では、HF法の結果がわずかに正の値を示しているにもかかわらず、MP2法の結果では符号が逆転し、わずかに負の値を示している(+0.6⇒-2.8kcal/mol)。これは変異後のほうがESTのERに対する結合が安定化していることになる。L525AはHF法に比べて絶対値が小さくなっている(-3.3⇒-2.1kcal/mol)。M528Aも同様により正の値を示した(0.1⇒2.0kcal/mol)。即ち、G521AではHF法に比べてDDEの符号が逆転し、L525Aでは絶対値が小さくなり、M528Aではより正の値を示した。方法による結果の変化は多少みられたが、E353Q、H524A、H524Qの3つに比べて、残りの3つの変異でDDEの値が小さいことはMP2法の場合も同様であった。

4. 2 実験データとの比較

本研究で参考にした実験データをTable 2に記した。この表はHerynkらの論文[12]から引用したもので、1アミノ酸変異の実験データの中からエストロゲンとERとの結合にかかわるようなデータを引用した。これらの実験データは全てアミノ酸変異に対して結合が低下していることを示唆している。

Table 2. Qualitative experimental data for the effects of point mutation on the ER-EST binding [12].
MutationResult of mutation
E353QDecreased affinity for estrogens
G521ADecreased estrogen binding
H524ADecreased estrogen binding
H524QDecreased response to estrogen
L525ADecreased estrogen binding
M528ADecreased estrogen binding

一方、本研究で行った計算では、DDEが正の値であれば、アミノ酸変異によってESTとERとの結合が野生型に比べてエネルギー的に不安定になっていることを示している。計算結果は先に述べたとおり、6つの内3つは明らかにDDEが正の値であったが、残りの3つは有意な結果とはいえなかった。このことはHF法でもMP2法でも同様であった。

5 考察

5. 1 E353Q、H524A、H524Q

特に大きくDDEの値が正となったE353Q、H524A、H524Qの変異については、Table 1より、他の3つとは対照的に、変異させることでアミノ酸の性質が全く変わっていることがわかる。E353Qでは、酸性側鎖をもつグルタミン酸から電気的中性であるが極性のあるグルタミンへ、H524Aでは塩基性のヒスチジンから非極性のアラニンへ、H524Qでは塩基性のヒスチジンから極性のあるグルタミンへ変化している。このようなアミノ酸変異によって、その周辺のクーロン相互作用が大きく変化していると考えられる。参考までに、Table 1に変異後の複合体全体の形式電荷の変化の値を示した。
結合エネルギーに加え、MP2法によりフラグメント間相互作用エネルギー(Inter-Fragment Interaction Energy; IFIE)解析を行った。これはある特定のフラグメントに対して、他のフラグメントとの相互作用エネルギーを計算したものである[13]。本計算では、1つのフラグメントに対し2アミノ酸残基が割り当てられており、最後の247番目のヒスチジン残基とESTに関しては、それぞれ1フラグメントずつが対応する。このため、あるフラグメントとESTとの間のIFIEは、そのフラグメントを構成する2アミノ酸残基とESTとの相互作用エネルギーに相当する。ESTに対して、ERの各フラグメントとのIFIE解析を行った。変異前後のESTとERのIFIE(Eint_frag)の差、DEint_fragを定義した。

E353Qに関しては、Figure 5の結果となった。非常に特徴的なのは、変異させたアミノ酸残基(353)のDEint_fragである。アミノ酸の電気的性質が大きく変化したために、ESTとの相互作用においてエネルギー変化が大きい。このグラフを図示し、さらにEST単体分子の静電ポテンシャルを重ねて表示したものがFigure 6である。黄色で表示されたESTに対して、受容体側のアミノ酸はIFIE値を可視化したもので、色の濃さに比例し、青が斥力、赤が引力的な相互作用を示している[14]。一方、ESTの骨格を覆っているのが静電ポテンシャルの等値面であり、青が正、赤が負の値を示す。Figure 6の左側が変異前、右側が変異後の図である。比較してみると、左側の変異前のアミノ酸残基(グルタミン酸)は赤く表示されており、引力を示している。一方、右側のアミノ酸(グルタミン)は青く表示されており、IFIEが正つまり斥力を表している。また、ESTの静電ポテンシャルも同時に表示させているが、変異前では青く表示されている正の静電ポテンシャルの中にグルタミン酸の酸素原子が入っている。これは負に帯電しているグルタミン酸の酸素原子に対してESTとのクーロン引力相互作用が働いていることを示している。一方、変異後の右の図では、グルタミン(GLN)の側鎖がESTと反対側に向いていることがわかる。つまりE353Qに関しては、変異させたアミノ酸残基の性質の変化が、そのままESTとの結合能の変化に効いていると思われる。


Figure 5. DEint_frag for EST in the case of E353Q.


Figure 6. IFIEs between EST and each amino acid residue of the ER in the case of E353Q. The IFIE values of the mutated residues with EST are represented by color (see text). Electrostatic potentials of EST are also shown as isosurfaces at ±0.02 a.u. when a +e charge exists. Left and right figures refer to those before and after the mutation, respectively. Thin line represents the main chain of ER.

H524A、H524Qに関しても同様に、ESTに対するフラグメント間相互作用解析の結果をFigures 7, 8に示した。E353Qと同様に、変異させたアミノ酸残基において大きく相互作用エネルギーが変化した。これはE353Qと同様にアミノ酸の性質の変化によるものと考えられる。E353Qとは異なり他のアミノ酸残基からの相互作用に関しても、2kcal/mol程度の変化は見られるが、やはり変異残基のところで最も大きいエネルギー変化を示している。Figures 9, 10では、H524A、H524Q双方とも変異させた前後で明らかにアミノ酸残基の側鎖の位置が異なっている。変異前ではヒスチジンの側鎖は、ESTの方を向いており、相互作用解析からも引力が働いていることがよくわかる。ヒスチジンは塩基性残基で、側鎖に正の電荷をもっている。また、ヒスチジンに近いESTはFigures 9, 10の通り負の静電ポテンシャルを示している。このために、強くクーロン引力相互作用が働いていたと考えられる。このアミノ酸残基をアラニンに変異させた場合、つまりH524Aでは、アラニンは非極性残基であるためにそのクーロン力相互作用が著しく弱くなったと思われる。H524Qでも、側鎖(主にアミドのN原子)に極性があるが、あらわに電荷をもつアミノ酸に比べるとやはりクーロン力相互作用が弱くなったと思われる。またFigure 10から、明らかにグルタミンの側鎖はESTと反対方向を向いており、極性をもつNH2基もESTとの結合にあまり関与していないと思われる。


Figure 7. DEint_frag for EST in the case of H524A.


Figure 8. DEint_frag for EST in the case of H524Q.


Figure 9. IFIEs between EST and each amino acid residue of the ER in the case of H524A. The IFIE values of the mutated residues with EST are represented by color (see text). Electrostatic potentials of EST are also shown as isosurfaces at ±0.02 a.u. when a +e charge exists. Left and right figures refer to those before and after the mutation, respectively. Thin line represents the main chain of ER.


Figure 10. IFIEs between EST and each amino acid residue of the ER in the case of H524Q. The IFIE values of the mutated residues with EST are represented by color (see text). Electrostatic potentials of EST are also shown as isosurfaces at ±0.02 a.u. when a +e charge exists. Left and right figures refer to those before and after the mutation, respectively. Thin line represents the main chain of ER.

5. 2 G521A、L525A、M528A

残り3つの変異G521A、L525A、M528Aは先の3つの変異と比べてDDEの絶対値が著しく小さく、約2〜3kcal/molである。典型的な水素結合のエネルギー(約3〜6kcal/mol)よりも低い。E353Q、H524A、H524Qに比べてほとんどDEは変わっていないといえる。これらの変異は全て非極性残基から非極性残基への変異であり、変異によるアミノ酸の性質の変化が小さいことが大きな要因であると思われる。
Figure 11にはG521Aの、ESTに対するIFIE解析のグラフを示している。変異残基に関するDEint_fragは正の値になっているが、他のアミノ酸残基においては負の値を示しているものもあり、特にGLY344、LEU345に関しては特徴的な変化を示している。


Figure 11. DEint_frag for EST in the case of G521A.

Figure 12ではそのGLY344、LEU345に対するIFIE解析の結果を示している。この図から、GLY344、LEU345に対するDEint_fragはESTとの相互作用を除いては、変異残基を含め、ほとんど相互作用に変化がないということがわかる。つまり、G521Aというアミノ酸変異によって変異残基とESTとの相互作用はわずかに斥力的となったが、ESTと他のアミノ酸残基において、より強い引力が働いた。これはアミノ酸変異を行った際の構造最適化におけるESTの構造変化によるものと思われる。全体としてESTとの結合能はわずかに強くなった。しかし変異残基の影響を受けているとは言い難い。


Figure 12. DEint_frag for GLY344, and LEU345 in the case of G521A.

L525Aに関しては、Figure 13に示している。この場合も変異残基とのDEint_fragがわずかに正の値を示しているが、他のアミノ酸残基に比較的大きな変化が起こっている。特に、GLY344、LEU345とLEU354、VAL355は非常に特徴的な結果を示しており、GLY344、LEU345は先のG521Aの場合と同様の結果を示していた(図示せず)。LEU354、VAL355に関しても同様の結果が現れた(図示せず)。やはり、これもESTの構造最適化による構造変化がこれらのアミノ酸残基との相互作用の変化を招いたと考えられる。


Figure 13. DEint_frag for EST in the case of L525A.

M528Aについては、Figure 14に結果を示した。ESTの、VAL422、GLU423との相互作用エネルギーのみが約2kcal/molほど変化している。この原因も先のG521A、L525Aの場合と同様に、構造最適化によるESTの構造変化と思われたが、視覚上ESTはほとんど構造変化していなかった。Figure 15はVAL422、GLU423に対するフラグメント間相互作用解析を行ったグラフである。変異残基との相互作用エネルギーも変化しているが、非常に小さい値である。この場合もほとんどアミノ酸変異の効果が現れていないことがわかる。


Figure 14. DEint_frag for EST in the case of M528A.


Figure 15. DEint_frag for VAL422, and GLU423 in the case of M528A.

5. 3 計算方法の検討

E353Q、H524A、H524Qの場合は、アミノ酸変異の効果を計算によって適切に取り入れることができた。しかし残り3つの変異G521A、L525A、M528A(電荷が変化しない場合)に対しては、今回の計算方法では十分であるとは言えない。原因として、幾つかの可能性が考えられる。まず、今回の変異方法では、構造最適化の範囲と力場の選択に対してある程度任意性がある。構造最適化はアミノ酸変異の効果を評価するためにESTと変異残基のみに対し同時に行ったが、リガンド結合部位での水素結合ネットワーク等を含む構造の正確な決定には、量子力学的な構造最適化を行う必要があるかもしれない。力場に関しては、今回MMFF94xを用いた。MMFF94x以外にもAMBER94力場を用いて同様の計算(但し、FMO計算はHF/STO-3G)を行ったが、計算結果はMMFF94xの場合と比べて大差なかったため、(古典)力場の影響は少ないと考えられる。理想的には、FMO法によるリガンド結合部位全体の構造最適化が望ましいが、現時点ではその手法の実行は困難である。
また基底関数も計算精度に影響すると考えられる。今回コンピュータリソースの関係上、HF/STO-3G、MP2/STO-3GでFMO計算を行った。確認のためにM528Aについては、基底関数を3-21Gにして計算を行ったが、この程度の拡張ではDDEの計算結果にはあまり変化がなかった(STO-3Gでは2.0kcal/mol、3-21Gでは0.2kcal/molとなった)。
また、結合部位における特定の水分子の取り扱いが計算結果に影響する可能性がある。本研究では、用いた結合構造中のリガンド周辺に水分子がなかったため、水分子は全て削除した。しかし以前の福澤らの研究[11]では、結合に関与する水1分子を考慮して、様々な種類のリガンド分子のERに対する結合能が調べられている。その結果、FMO法によって求められた結合エネルギーと実験によって得られているRBA(Relative Binding Affinity)[15]の値との間で良い相関がみられた。また福澤らの別の研究[16]から、結合部位でのリガンド、その周辺残基、水分子間での電荷移動が報告されている。Figure 16は、福澤らが基にした立体構造(PDB ID; 1ERE)であるが、これらの研究からFigure 16のような位置にある水分子は結合能を評価する上で、重要な要素の1つだと示唆されている。


Figure 16. Molecular structure of ligand pocket region (PDB-ID: 1ERE), where the dashed-line represents the hydrogen bond.

ところが今回の場合、構造を見てみると(Figure 16;中心にESTがあり周辺のアミノ酸残基は今回変異を行ったアミノ酸残基(GLU、GLY、HIS、LEU、MET)が表示されている)、水分子はESTの図中の左側に位置し、353番目のグルタミン酸とは水素結合を形成しているが、右側の4残基とは直接相互作用していない。従って今回検討を行った殆どの変異に関しては、この水分子の有無が結合能の変化に大きく寄与しているとは思えない。また、マクロな溶媒効果に関しても、これらポケット部分のような水に露出していない局所的な場に対する影響は一般には大きくないと思われる。変異によりアミノ酸の電荷が変化し、静電相互作用が大きく変化する場合、水分子によるクーロン遮蔽効果が重要となる可能性もあるが、「結合能の変化の方向」という定性的な議論に限定すれば、真空中の計算でも理論解析は可能だと考えられる[17]。なお、Polarizable Continuum Modelによる溶媒和エネルギーの見積りについては、文献[11]に考察がある。
溶媒効果と関連して、受容体タンパク質とリガンド分子との結合を考える際、エントロピー変化に関する考察も必要となる。現状のFMO計算の枠内ではこの取り扱いは困難であるが、ここでは以下の二つの点をコメントしておく。第一に、電荷が変化するようなアミノ酸変異の自由エネルギー変化に対しては、エントロピーの寄与はエンタルピーの寄与と比べて相対的に小さいと期待できる。第二に、電荷が変化しない変異の場合にはエントロピー効果が重要となる可能性が考えられ、この効果を何らかの形で取り入れることで、計算と実験の一致が改善される可能性がある。
また、本系では複合体全体が荷電しているため、実際にはカウンターイオンが配位していると考えられる。特にアミノ酸変異によって正味の電荷が変化する場合にはこれらのイオンが結合性に影響する可能性も考えられる。
さらに、本解析で取り入れられなかった効果として、アミノ酸変異による大規模な構造変化の可能性が考えられる。本研究では野生型の立体構造を基に解析を行ったが、本来タンパク質は1つのアミノ酸が変異しただけでも、タンパク質本来の機能を果たせなくなることがある。つまり1アミノ酸変異によって、タンパク質の立体構造が大きく変化する場合がある可能性を示している。今回行ったような、局所的な構造変化を仮定した評価方法では、E353Q、H524A、H524Qのように電気的性質が大きく変化するアミノ酸変異の場合は結合能の変化を表現できるが、タンパク質全体に構造変化を及ぼすようなアミノ酸変異が重要である場合には、この方法では取り扱うことができない。アミノ酸変異による結合能の変化をみるには、このような効果をどのように考慮するかという点も大きな課題である。現在、計算化学においてタンパク質の構造予測も非常に盛んな研究分野であるが、本研究で用いたようなERのLBD(約250残基)規模の立体構造を予測するには至っていない。アミノ酸の性質があまり変化せず、しかもある程度広い領域で構造変化が起きる場合に、変異による結合能の変化を本研究のような方法で(しかも 5 kcal/mol 程度以内のエネルギー誤差で)扱うことは現時点ではまだ困難であると言わざるを得ない。

6 まとめ

本研究では、6種類の1アミノ酸変異体に対するFMO計算を行い、それに対応する実験データとの定性的な比較を行った。
3つのアミノ酸変異(E353Q、H524A、H524Q)では結合エネルギー差DDEが正の値を示し、実験データを定性的には再現したと言える。アミノ酸の性質の変化に起因するクーロン相互作用が、ESTのERに対する結合能の変化に大きな影響を与えていた。残りの3つのアミノ酸変異(G521A、L525A、M528 A)については、DDEが小さな値を示し前者ほど明確な結果は得られなかった。今回、アミノ酸変異を行う際の構造最適化の手法や基底関数の選択、そして大規模な構造変化や溶媒分子・エントロピー効果の考慮などの点において理論解析上の問題が残っており、今後はこれらを詳細に検討する必要がある。

本研究は科学技術振興機構(JST)戦略的創造研究推進事業(CREST)の研究課題「フラグメント分子軌道法による生体分子計算システムの開発」の資金援助により行われた。

参考文献

[ 1] T. Kaminuma, CBI Journal, 3, 130-157 (2003).
[ 2] K. Kitaura, E. Ikeo, T. Asada, T. Nakano and M. Uebayashi, Chem. Phys. Lett., 313, 701-706 (1999).
[ 3] T. Nakano, T. Kaminuma, T. Sato, Y. Akiyama, M. Uebayashi and K. Kitaura, Chem. Phys. Lett., 318, 614-618 (2000).
[ 4] K. Kitaura, S. Sugiki, T. Nakano, Y. Komeiji, and M. Uebayashi, Chem. Phys. Lett., 336, 163-170 (2001).
[ 5] T. Nakano, T. Kaminuma, T. Sato, K. Fukuzawa, Y. Akiyama, M. Uebayashi and K. Kitaura, Chem. Phys. Lett., 351, 475-480 (2002).
[ 6] Y. Mochizuki, S. Koikegami, T. Nakano, S. Amari, and K. Kitaura, Chem. Phys. Lett., 396, 473-479 (2004).
[ 7] Molecular Operating Environment, version 2005.06 ; Chemical Computing Group : Montreal, Canada.
[ 8] 中野達也, 谷森奏一郎, 加藤昭史, 小池上繁, 雨宮克樹, 福澤薫, フラグメント分子軌道法入門, アドバンスソフト (2004).
[ 9] ABINIT-MPおよびBioStation Viewerのダウンロード先URL
http://www.rss21.iis.u-tokyo.ac.jp/result/download
[10] T. A. Halgren, J. Comput. Chem., 17, 490-519 (1996).
[11] K. Fukuzawa, K. Kitaura, M. Uebayashi, K. Nakata, T. Kaminuma and T. Nakano, J. Comp. Chem., 26, 1-10 (2005).
[12] M. H. Herynk and S. A. W. Fuqua, Endocrine Reviews, 25, 869-898 (2004).
[13] K. Fukuzawa, Y. Komeiji, Y. Mochizuki, A. Kato, T. Nakano, and S. Tanaka, J. Comp. Chem., 27, 948-960 (2006).
[14] A. Kato, K. Fukuzawa, Y. Mochizuki, S. Amari, T. Nakano, Journal of the Visualization Society of Japan, 26, 124-129 (2006).
[15] G. G. J. M. Kuiper, J. G. Lemmen, B. Carlsson, J. C. Corton, S. H. Safe, P. T. van der Saag, B. van der Burg, and J-A. Gustafsson, Endocrinology, 139, 4252-4263 (1998).
[16] K. Fukuzawa, Y. Mochizuki, S. Tanaka, K. Kitaura and T. Nakano, J. Phys. Chem. B, 110, 16102-16110 (2006).
[17] S. Sugiki, M. Matsuoka, R. Usuki, Y. Sengoku, N. Kurita, H. Sekino, and S. Tanaka, J. Theor. Comput. Chem., 4, 183-195 (2005).


Return