Return

For mononuclear octahedral high-spin cobalt(II) complexes, Lines and Figgis developed methods for the calculation of the magnetic susceptibility of a high-spin cobalt(II) complex by considering the axial distortion and spin-orbit coupling [3, 4]. For dinuclear complexes containing two equivalent octahedral high-spin cobalt(II) ions, Lines developed a magnetic susceptibility equation for pure octahedral coordination geometries [5], and Sakiyama developed susceptibility equations for distorted octahedral geometries considering the axial distortion, spin-orbit coupling, and isotropic/anisotropic exchange interaction [6 - 9].

A first MagSaki software was developed earlier for the purpose of analyzing the observed magnetic data of dinuclear high-spin cobalt(II) complexes [10]; however, the previous MagSaki software always treated the exchange interaction isotropically, which sometimes was not sufficient. Thus, here is a report on the Magsaki(A) software that can treat the exchange interaction anisotropically.

Table 1. List of the main symbols [2, 5 - 9].

Symbol | Unit | Meaning |
---|---|---|

g | - | g-factor |

J | cm^{-1} | Exchange interaction parameter between true spins (3/2) |

T | K | Absolute temperature |

TIP | cm^{3} mol^{-1} | Temperature-independent paramagnetism |

v | - | Distortion parameter defined as D/(k l) |

D | cm^{-1} | Axial splitting parameter |

k | - | Orbital reduction factor |

l | cm^{-1} | Spin-orbit coupling parameter |

m_{eff} | m_{B} | Effective magnetic moment |

c_{A} | cm^{3} mol^{-1} | Atomic magnetic susceptibility |

Figure 1. Main window of the MagSaki(A) software.

Figure 2. Chemical structures of bhmp^{−} and bomp^{−}.

Table 2. Magnetic parameters.^{a}

Complex | k | l/cm^{-1} | D/cm^{-1} | J/cm^{-1} | g_{z}^{b} | g_{x}^{b} | R/10_{c}^{c}^{-3} | R/10_{m}^{d}^{-4} | Mode | Reference |
---|---|---|---|---|---|---|---|---|---|---|

1 | 0.77 | -116 | 572 | -0.44 | 2.11 | 4.73 | 0.036 | 0.036 | 2 | [12] |

0.80 | -122 | 673 | -0.30 | 2.08 | 4.74 | 0.033 | 0.035 | 5 | this work | |

2 | 0.96^{e} | -93 | 616 | -0.33 | 2.09 | 4.91 | 0.16 | 0.59 | 2 | [12] |

0.93 | -99 | 543 | -0.33 | 2.15 | 4.93 | 0.22 | 0.15 | 2 | this work | |

0.93 | -99 | 552 | -0.21 | 2.15 | 4.92 | 0.20 | 0.15 | 5 | this work | |

3 | 0.98^{e} | -134 | 749 | -0.55 | 2.18 | 4.99 | 0.12 | 0.89 | 2 | [7] |

0.93 | -124 | 578 | -0.54 | 2.25 | 4.96 | 0.16 | 0.90 | 2 | this work | |

0.93 | -125 | 581 | -0.38 | 2.25 | 4.96 | 0.11 | 0.91 | 5 | this work | |

4 | 0.84 | -138 | 440 | -0.90^{f} | 2.45 | 4.84 | 1.7 | 1.6 | 2 | [7] |

0.84 | -141 | 461 | -0.67 | 2.42 | 4.85 | 1.6 | 1.5 | 5 | this work |

Table 3. Failed example (example 1b is a failed example).

Example | Complex | k | l/cm^{-1} | D/cm^{-1} | J/cm^{-1} | g_{z} | g_{x} | R/10_{c}^{a}^{-3} | R/10_{m}^{b}^{-4} | Mode | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|

1a | 1 | 0.80 | -122 | 673 | -0.30 | 2.08 | 4.74 | 0.033 | 0.035 | 5 | this work |

1b | 1 | 0.93 | -136 | 1088 | -0.32 | 2.03 | 4.79 | 0.028 | 0.024 | 5 | this work |

This work was supported by the Saneyoshi Scholarship Foundation.

[ 2] O. Kahn,

[ 3] M. E. Lines,

[ 4] B. N. Figgis, M. Gerloch, J. Lewis, F. E. Mabbs, G. A. Webb,

[ 5] M. E. Lines,

[ 6] H. Sakiyama, R. Ito, H. Kumagai, K. Inoue, M. Sakamoto, Y. Nishida, M. Yamasaki,

[ 7] H. Sakiyama, R. Ito, H. Kumagai, K. Inoue, M. Sakamoto, Y. Nishida, M. Yamasaki,

[ 8] H. Sakiyama,

[ 9] H. Sakiyama,

[10] H. Sakiyama,

[11] REAL Software, Inc., 1996-2006

http://www.realsoftware.com/

[12] M. J. Hossain, M. Yamasaki, M. Mikuriya, A. Kuribayashi, H. Sakiyama,

Appendix_1 , Appendix_2 , Appendix_3 , Appendix_4 , Appendix_5 , Appendix_6 , Appendix_7 , Appendix_8

Return