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The “double-glazed vessel model” (DGV model) is an imaginary model modified
from the previously reported “test tube model”, and is drawn graphically by computer.
The vessel has a double wall, the inner wall of which has a pinhole near the bottom. The
“mass of gathered solute molecules” is considered to be liquid, and is referred to merely
as “solute”. At equilibrium, thesolute levels in the two compartments become equal.
The inner and outer compartments form the shapes ofsolutein the stationary and mobile
phases, respectively. For example, a vessel with cylindrical (inner) and trumpet-shaped
(outer) walls is devoted to the convex (Langmuir-type) isotherm. Computer simulations
of chromatography using the DGV model directly explained the asymmetric peaks caused
by nonlinear isotherms. For example, the explanation of the tailing peak caused by convex
isotherm, “as muchsolute is transferred (relatively to that remaining in the stationary
phase) at the center of the band rather than at the edges, i.e. as the center moves faster than
the edges, the chromatogram exhibits tailing”, is directly understood from the simulated
result (Figure 4A).
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1 Introduction

Although peak asymmetry may arise from other sources [1], the peak asymmetry of thermodynamic
origin is most important for studying asymmetric chromatographic peaks [2]. Asymmetric chro-
matographic peaks, “tailing” and “fronting”, have been explained well by the convex and concave
isotherms, respectively [2–5]. However, it is not always easy to understand these explanations in-
stantaneously, mostly because they were made without appropriate position peaks (chromatographic
peaks that are still on a column [6]). A computer simulation based on the Craig plate model (discon-
tinuous plate model [1]) for the convex (Langmuir-type) isotherm can easily draw a tailing position
peak [7]. However, the peak itself is merely a calculated result and does not explain why the peak
tailed. Further, a linear isotherm with a small capacity factor (k’<1) also gives a tailing position peak
at a small number of transfers of mobile phases,n [7]; of course, this tailing peak becomes more
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Gaussian asn becomes larger [7], and the chromatogram (exit peak [6]) also becomes more Gaussian
as the number of theoretical plates,N, becomes larger [1, 6]. Therefore, these kinds of tailing position
peaks represented by ordinary line graphs alone are not useful for the explanation of why these peaks
tailed.

The “test tube model” (TT model), an analogue column model manipulated by hand, was devised
for the explanation of asymmetric peaks[8]. The theoretical basis of the TT model is the Craig plate
model, which has been well illustrated using ideal countercurrent distribution [1, 3, 6]. In the TT
model, solute molecules are imagined separated from the solvents and gathered together tightly, and
are represented by “water”. Therefore,the volume of water denotes the amount of solute. The TT
model is exemplified as follows. For the convex (Langmuir-type) isotherm, one theoretical plate
consists of a flat-bottomed test tube and trumpet-shaped vessel, which are devoted to forming the
shapes ofwater in the stationary and mobile phases, respectively. At equilibrium,water is partitioned
between two vessels according to the isotherm; this equilibration is accomplished by making the
water levels in the two vessels the same. Alternate repetitions of the equilibrations and the transfer
of the series of trumpet-shaped vessels (mobile phases) to the next plates result in the distribution of
water (position peak). The position peak was very useful for the explanation of why the peak tailed.
The inverse, a trumpet-shaped vessel (stationary phase) and test tube (mobile phase), represents the
concave isotherm. The strong point of the TT model is that the shapes of isotherms can be imagined
easily from the combinations of the paired vessels. However, this model requires simple but special
glass vessels (trumpet-shaped) and the procedure is rather laborious.

Therefore, a computer program was developed to draw graphically the TT model accompanied by
some modifications for better presentation; the modified model was named the “double-glazed vessel
model” (DGV model). Then, simulations of chromatography using the DGV model were performed.

2 Concept

The concept of the modified model (DGV model, Figures 1, 2) is essentially the same as that of the
previous model [8], the theoretical basis of which was the Craig plate model [1, 3, 6]. At equilibrium,
the solute is partitioned between the stationary (S) and mobile (M) phases at each plate, and the
partition coefficient,K, is defined as the ratio of the concentrations (CS andCM ) of solute in two
phases :

K =CS=CM (1)

In linear isotherms, this ratio is independent (in nonlinear isotherms, dependent) of solute concen-
trations. The capacity factor,k’, is defined as the ratio of the amounts (nS andnM) of solute in two
phases:

k0 = nS=nM =CSVS=CMVM = K(VS=VM) (2)

whereVS andVM are the phase volumes. Under the assumption thatVS = VM, the value ofk’ is equal
to that ofK, and discussion of the concentration is replaceable by discussion of the amount of solute
(Figure 2).

2.1 Solute

Solute molecules of the same kind in each phase (Figure 1A) are imagined separated from the solvents
and gathered together tightly in intrinsic shape (Figure 1B). In the DGV model, the “mass of gathered
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Figure 1. Concept of the “double-glazed vessel model” (DGV model)
exemplified by a linear isotherm. A and B represent the same equilib-
rium state of one kind of solute at a given plate in a column. In the
DGV model, solvents are omitted and thesolute(full lines) is in a ves-
sel (broken lines). Thesolutelevels (h) in the two compartments are
the same (equilibrium state). The volume ofsolute in each compart-
ment denotes the amount of solute (n), not phase volume (V); also, each
compartment does not mean the whole of each phase and is drawn with
adequate height. Other symbols:C, concentration of solute;A, aver-
aged cross-sectional area ofsolute; rb, radius at the bottom. For details,
see the text.

solute molecules” is considered to be liquid, and is referred to merely as “solute” hereafter. Of
course,the volume of solute denotes the amount of solute(nS andnM in Figure 1B and Figure 2), and
is represented in milliliters.

2.2 Vessels and isotherms

An isotherm is represented by pouringsoluteinto a vessel (DGV model, Figures 1, 2). The DGV
model has a double wall, and the inner and outer compartments are devoted to forming the shapes
of solutein the stationary (S) and mobile (M) phases, respectively. As the location of two phases
is close to the actual state, in which the mobile phase exists around the stationary phase, it is easily
understood. The inner wall has a pinhole near the bottom, through which thesolutecan move freely.
Therefore, thesolutelevels (h) in the two compartments become the same (equilibrium state). As
this representation of equilibrium state is reasonable, it is easily understood. In the DGV model, the
capacity factor (Eq.2) is represented by the ratio of the “averaged” cross-sectional areas (AS andAM)
of solutein two phases:

k0 = nS=nM = (vol: of solute)S=(vol: of solute)M = ASh=AMh= AS=AM (3)
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Figure 2. Isotherms ordinarily represented (left) and the corresponding isotherms repre-
sented by the DGV model (right). Under the assumption thatVS = VM, thenS - nM graph
is equal to that ofCS - CM. Langmuir coefficients of B (Eq.4) and C (Eq.5) are:a = 77.4;
b = 0.0232 [8]. Values ofk’ at the origins: B, 1.796 (ab, from Eq.4); C, 0.557 (1/ab,
from Eq.5). Each figure is exemplified by the state,nS + nM = 68.6 ml; at this amount, B
and C correspond tok’ = nS/nM = 1. rb;out (in A) = 1.63cm,rb;in (in B and C) = 1.15cm,
and other radii are derived (see section 3).AM ’s in the nonlinear isotherms depend on the
amount ofsolute. For details, see the text.
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This is a fundamental equation for the TT and DGV models, and suggests that many models can
be used for one isotherm; for example, in the TT model [8], a linear isotherm (k’ = 1) could be
represented by three pairs of thin test tubes, thick test tubes, and trumpet-shaped vessels. In the DGV
model, for ease of understanding, the inner walls for all isotherms are made cylindrical (Figure 2), i.e.
the values ofAS remain constant with increasing value ofh. In the linear isotherms, as the values of
k’ are independent of the amount ofsolute(nS andnM ), i.e. as the values ofAM also remain constant
(from Eq.3), the outer walls also are cylindrical (Figure 2A). The convex (Langmuir-type) isotherm
is represented as

nS= abnM=(1+bnM) (4)

In this isotherm, because the value ofk’ decreases (AM increases from Eq.3) asnS andnM increase,
the outer wall is trumpet-shaped (Figure 2B); this isotherm has a maximum value ofh. The concave
(anti-Langmuir type) isotherm is represented as

nS= nM=(ab�bnM) (5)

Equation 5 is identical to the inverse function of Eq.4:nM = abnS/(1+bnS). In this isotherm, because
the value ofk’ increases (AM decreases from Eq.3) asnS andnM increase, the outer wall is tapered
and becomes closer to the inner wall (Figure 2C). The Langmuir coefficients in Eqs. 4 and 5 are
determined as the same values as in the previous model [8] for ease of reference (Figure 2).

For nonlinear isotherms (Figure 2B and Figure 2C), although it is difficult to estimate the value
of AM precisely by eye, the following are easily understood. For the convex isotherm, with higherh,
AM becomes larger. For the concave isotherm, with lowerh, AM becomes larger. These are sufficient
for the explanation of asymmetric peaks (section 4.3). For one kind of solute under a given set of
conditions, a column consists of a series of one kind of vessel (in Figures 3, 4, vessels are omitted for
simple presentation).

3 Calculation Methods

All calculations and drawings of figures were performed using an NEC Model PC-9801/9821 personal
computer with a program written in BASIC (N88BASIC(86)). The program is available on request to
the committee on software distribution ofThe Chemical Software Society of Japan(CSSJ).

The amounts ofsolute(nS andnM) distributed in each plate (the plate number,j) at a given stagen
were calculated as described [7] (fundamental calculations). The calculated values are necessary for
the drawing of Figures 3, 4; the arrows, the ordinary line graphs, and chromatograms in Figures 3, 4
were easily drawn from the values. A chromatogram is a series ofnM values leaving the last plate of
the column.

For the drawing of outlines ofsolute(vessel also) in Figures 2–4, it was necessary to predetermine
the paired radii of the inner outline (rb;in) and outer outline (rb;out) at the bottom. If the paired radii
give the value ofk’ at the origin of a given isotherm, these radii can be determined arbitrarily (Eq.3).
If one radius is determined, the other is derived from Eq.3; for example in Figure 2A,rb;in = 0.815
cm is derived fromrb;out = 1.63cm andk’ = 0.333 = 1/3, becauseAS/AM = rb;in

2/(1.632 - rb;in
2) = 1/3.

For ease of reference, the values ofrb;in andrb;out in Figures 2–4 are determined by referring to the
previous model [8].

To draw outlines, relationships between the volume ofsolute(V) andh, i.e. h = f (V), are also
necessary. In the following equations, theAS’s of all isotherms andAM ’s of linear isotherms are
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constants. In all isotherms, the relationships on the inner outlines are represented as

h=V=AS (6)

whereV = nS. In all isotherms, for the relationships on the outer outlines,V is represented as

V = nS+nM (7)

For linear isotherms, the relationships on the outer outlines are represented as

h=V=(AS+AM) (8)

For the convex isotherm, the relationship on the outer outline is obtained from Eqs. 4 and 7 by
replacingnS with ASh as follows:

h= [(bV+ab+1)�
p

Z]=2bAS (9)

whereZ = (bV + ab + 1)2 - 4ab2V. Similarly, for the concave isotherm, the relationship on the outer
outline is obtained from Eqs. 5 and 7 by replacingnS with ASh as follows:

h= [(bV�ab�1)+
p

Z]=2bAS (10)

whereZ = (bV - ab - 1)2 + 4bV , which is identical toZ in Eq.9.
Each of the inner and outer outlines ofsolute(vessel also) in Figures 2–4 is drawn as a series of

thin truncated cones with constant volume (dV) [9]. Although the volume (dV) can be determined
arbitrarily, a small value is preferable. The radii of the base and roof, and the height of the truncated
cone are given asrB, rR, anddh, respectively. The value ofdh is obtained from the relationship,dh=
f (V0 + dV) - f (V0). At the start,rB=rb;in (or rb;out), andV0= 0. Then,rR is obtained from the values
of rB, dV anddh. After replacement of the value ofrR by the newrB and adding the constantdV to
V0, the next calculation is performed. These calculations are repeated untilV0 + dV reaches the given
value ofV obtained from the fundamental calculation (see above).

4 Results and discussion

4.1 Chromatographic process

In the Craig plate model [1, 3, 6], column operations consist of two kinds of processes: the equilibra-
tion of solute molecules between the stationary and mobile phases, and the subsequent transfer of the
series of mobile phases to the next plates. Alternate repetitions of these two processes transfer the so-
lutes at their intrinsic rates. In the DGV model, the transfer of mobile phases is performed imaginarily
by the transfer of the series ofsolute(nM) in the outer compartments to the next outer compartment
in the next plates (with pure mobile phases). A computer simulation of chromatography using the
DGV model can represent the equilibrated state at a given stagen; if necessary, the chromatogram
represented by an ordinary graph is also included (Figures 3, 4). The simulations were performed
easily with changing parameters,k’, a, b, N, andnt (sample size, i.e. total amount ofsoluteloaded).
The band profile with lowh at both edges of the band and highh at the center (exactly, not edge) is
observed not only in the linear but also in nonlinear isotherms after several transfers (Figures 3, 4).
Their shapes, with the exception of the linear isotherm (k’ = 1), are asymmetric at early stages (small
n). On the other hand, their chromatograms with smallN show a stronger tendency toward tailing [6,
8].
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4.2 Symmetric peaks (linear isotherms)

Simulations for the linear isotherms (Figure 3) are fundamental, and form the basis of those of non-
linear isotherms. The amount ofsolute(nS + nM) in each plate in Figure 3A is equivalent to the
corresponding value in Figure 3B (calculated as described [1, 3, 6, 7]); of course,h of that in Figure
3A is proportional to the value in Figure 3B.

The migration velocity (v) of the solute band in the column is proportional to the retardation factor
[2, 5], 1/(1 +k’):

v= c=(1+k0
) (11)

where c is a proportional constant.

Figure 3. Computer simulations of chromatography using the DGV
model for linear isotherms.nt (total amount ofsolute) = 360 ml. A:
Position peaks (equilibrated states) represented by the DGV model at
stagen = 7. Vessels are omitted.rb;out = 1.63cm.j : the plate number.
Arrows (neglected in plates with less than 1% ofnt) represent band
velocities,v (Eq.11). B: Position peaks (ordinary graphs) corresponding
to A. C: Chromatograms withN (number of theoretical plates) = 30.n:
the number of transfers.

The characteristic retention behaviors for the linear isotherms are as follows, and are directly
understood by referring to Figures 2, 3 (if necessary, see Eqs. 3 and 11). As the value ofk’ is
independent of the amount ofsolute, each position peak has its constant value ofv in all parts of the
band. Therefore, the early asymmetric position peak approaches a Gaussian (symmetric) distribution
with increasing value ofn [1, 6]; the constancy ofv is a strong reason for the process toward a
Gaussian distribution. As the tendency toward tailing is weakened, the chromatogram (Figure 3C)
also approaches a Gaussian distribution with increasing value ofN [6, 8]. The differences between the
exact Gaussian profiles [1] and the chromatograms (Figure 3C) are very small. From the comparison
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of two isotherms (k’ = 0.5 and 1), as the value ofAM increases relatively toAS (k’ decreases from
Eq.3 ), i.e. as muchsoluteis transferred (relatively to the amount ofsoluteremaining in the stationary
phases),v increases (see Eq.11) and so the retention time (tR) in the chromatogram decreases. The
absolute values ofv are represented supplementarily by the length of the arrows (Figure 3A).

4.3 Asymmetric peaks (nonlinear isotherms)

Simulations for the nonlinear isotherms are shown in Figure 4. The amount ofsolute(nS + nM) in
each plate in Figure 4A is equivalent to the corresponding value in Figure 4B (calculated as described
[7]); but, h of that in Figure 4A is not proportional to the value in Figure 4B.

Figure 4. Computer simulations of chromatography using the DGV
model for nonlinear isotherms. Langmuir coefficients are in Figure 2.
nt = 360 ml. A: Position peaks (equilibrated states) represented by the
DGV model at stagen = 7. rb;in = 1.15cm. Vessels are omitted. Arrows
(neglected in plates with less than 1% ofnt) represent relative band ve-
locities,vrel (Eq.12). B: Position peaks (ordinary graphs) corresponding
to A. C: Chromatograms withN = 30.

Asymmetric peaks caused by nonlinear isotherms have been explained well by the difference of
v between the positions of the band [2, 3, 5, 8]. In this paper, these peaks are explained by the DGV
model likewise. The following can be directly understood by referring to Figures 2, 4 (if necessary,
refer to Figure 3 also). In these isotherms, the value ofk’ is dependent on the amount ofsolute; in
the DGV model,AS is independent of the amount ofsolute, butAM is dependent. Therefore, against
the tendency toward Gaussian profile, the asymmetries of the early asymmetric position peaks are
maintained with increasing value ofn as follows; also in their chromatograms, as the tendency toward
tailing is weakened with increasing value ofN [6, 8], the asymmetries are maintained. In a convex
isotherm, as the value ofAM at the center of the band is larger (k’ is smaller, from Eq.3) than those
at either edge, i.e. as muchsoluteis transferred (relatively to the amount ofsoluteremaining in the
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stationary phase) at the center than at the edges, the center moves faster than the edges and so the
chromatogram exhibits tailing. Conversely, in a concave isotherm, as the values ofAM at the edges
are larger (k’s are smaller, from Eq.3) than the center, i.e. as muchsoluteis transferred (relatively to
the amount ofsoluteremaining in the stationary phase) at the edges than at the center, the edges move
faster than the center and so the chromatogram exhibits fronting. The relative values ofv (vrel) are
represented supplementarily by the length of the arrows:

vrel = 3(v�vlow) (12)

wherevlow is the lowest value ofv in the band, and 3 is an arbitrary numeral for the magnification of
vrel. In Figures 3, 4,c (in Eq.11) is the same value fixed arbitrarily.

The sample size (nt) affects retention behavior (values ofk’, v, andtR) and peak shape [2, 4]. As
the sample size decreases, the retention behavior and peak shape approach those of a linear isotherm
with k’ value at the origin of the isotherm. The simulated results of position peak and chromatogram
for the convex isotherm agreed well with those of the TT model [8] under the same conditions (a =
77.4,b = 0.0232,nt = 192 ml,n = 4, andN = 10); in the position peaks, the data ofh at each plate
were compared.

The position peak represented by the DGV model (in Figure 3A and Figure 4A) is a kind of bar
graph with a special function, and explains why one early asymmetric position peak (the peak ofk’
= 0.5 in Figure 3) approaches a Gaussian distribution, while the other (the peak of convex isotherm
in Figure 4) retains asymmetry with increasing value ofn. On the other hand, the ordinary graphs
(Figure 3B and Figure 4B) alone are not so useful for the explanation, because these graphs provide
no information about their isotherms. If Figure 3B and Figure 4B are represented by the components
nS andnM, it is generally not so easy to estimate the size ofk’ from the data by eye.

5 Conclusion

The DGV model (Figures 1, 2) is directly understood, because ( i ) the location of thesolutein the
stationary and mobile phases is close to the actual state, ( ii ) the presentation of equilibrium state is
reasonable, and ( iii ) the shapes of isotherms can be imagined rather easily from the shapes of vessels.

Computer simulations of chromatography using the DGV model with changing parameters were
performed easily. Position peaks for the linear isotherms (Figure 3) at an appropriate stage are useful
to understand the process toward a Gaussian distribution and the fundamental retention behaviors
directly. Those of nonlinear isotherms (Figure 4) are also useful to understand asymmetric peaks
directly, because the following explanation can be directly understood. The part of thesoluteband
where the value ofAM is larger (k’ is smaller, from Eq.3) than the other, i.e. the part where much
solute is transferred (relatively to the amount ofsoluteremaining in the stationary phase), moves
faster than the other. The position peak represented by the DGV model is a kind of bar graph with a
special function. The band velocities represented supplementarily by the arrows were convenient for
explanation.
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非線形等温線に基づくクロマトグラフィーの
シミュレーション：二重壁容器モデル

菅田節朗*, 阿部芳廣

共立薬科大学,〒 105-8512 　東京都港区芝公園 1-5-30
*e-mail: sugata-st@kyoritsu-ph.ac.jp

過去に、非線形等温線の形とクロマトグラムの形との関係をよりよく理解するた
めのガラス容器を用いたモデルを発表した。今回は、このモデルのコンピューターシ
ミュレーション化を行った。その際、各段の固定相と移動相の関係を実際的イメージ
に近づけるなど改良した。この新モデルを「二重壁容器モデル（ＤＧＶモデル）」と
名づけた。ＤＧＶモデルは、もともと液－液分配クロマトグラフィーからイメージ
したが、各液相中で溶質分子のみ集めた架空の状態（以下溶質と表現し、液体とみな
す）をイメージし、この溶質が内室（固定相）と外室（移動相）に分配されると考え
る（溶媒分子は無視する）（Figure 1）。底に近い内壁には小さな穴があいており、内
室と外室の液面は同じ高さになる（平衡状態）。内外壁とも円筒形だと線形等温線を
表し、内壁は円筒形だが外壁がラッパ型だとラングミュアー型の非線形等温線を表す
（Figure 2）。各段の外室内溶質の一斉移動と平衡が繰り返されて、溶質が各段に分配
される (Figure 3および Figure 4)。これらの図から非線形等温線の形とクロマトグラ
ムの形との関係が直感的に理解できる。線形では、キャパシティファクター k’が小
さいほど大量の溶質が運ばれる、つまり移動速度大なので、クロマトグラムの保持
時間が短くなるのが直感的に分かる（一つのバンド内では、均一速度）。また、線形
を基礎に非線形を考えると、たとえば凸型だと、バンドの中央で移動速度大なので、
クロマトグラムはテーリングするということが容易に理解できる。

キーワード : Analogue column model, Nonlinear isotherms, Double-glazed vessel model,
Chromatography, Computer simulation
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