Study on TiO₂ Photocatalysis for Organics by

Accelerated Quantum Chemical Molecular Dynamics Method

OLv Chen¹, Wang Xiaojing¹, Tomonori Kusagaya¹, Ai Suzuki¹, Akira Endou¹, Momoji Kubo¹, Akira Miyamoto^{1, 2}

¹⁾ Graduate School of Engineering, Tohoku University, Aoba-yama 07, Sendai 980-8579.
²⁾ New Industry Creation Hatchery Center, Tohoku University, Aoba-yama 04, Sendai 980-8579.

[Introduction]

Photocatalytic reactions are useful for the treatment of air polluted with organic compounds. Hitherto, many researchers have investigated the photooxidation of organic pollutants and have reported that a variety of compounds, such as hydrocarbon, alcohols, chlorohydrocarbons and amines are decomposed on the UV-irradiated TiO_2 catalyst under ambient conditions. In this study, the photooxidation of CH_3CI was carried out at room temperature. Moreover the results including a fully optimized ground-state structure obtained as well as the densities of states (DOS) are also presented.

[Method]

The accelerated quantum chemical molecular dynamics calculations were carried out using 'Colors' program, which is based on the tight-binding approximation. The Amsterdam density functional (ADF) program based on the density functional theory is also employed to determine the parameters for 'Colors'.

[Results and discussion]

We performed the quantum chemical calculations of the band structure of TiO_2 by 'Colors' program. The fully optimized structure was obtained by minimizing the total energy and atomic forces by 'Colors' program. We also acquired the Densities of States (DOS) of TiO_2 structure. Fig. 1. shows the DOS of TiO₂. From DOS, valence band composed by 0 2p orbitals and conduction band composed by Ti 3d orbitals can be found easily at A point and B point of Fig.1 respectively. Moreover the band gap energy of 3.15 eV, which is agreement with the experiment well, was attained. We also investigated the photodecomposition process of hydrocarbons. Fig. 2 shows the model of $CH_3CI-TiO_2$ system. Our results show that these compounds can be decomposed on the TiO_2 catalyst.

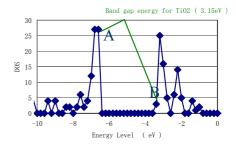


Fig.1. The DOS of TiO₂ structure.

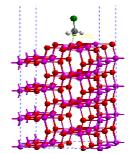


Fig.2. Model of CH₃Cl-TiO₂ system

References

1. A.L. Linsebigler et al., Phys. Rev. B, 95, 735-758 (1995).