密度汎関数法によるゼオライト酸強度の評価(2)

○山本俊生、叶木朝則、後口 隆、八尾 滋

宇部興産高分子研究所(〒290-0045 千葉県市原市五井南海岸 8-1)

【緒言】 固体酸としての性質を持つゼオライトは、酸触媒としての用途が期待されている。ゼオライトの酸強度が酸触媒活性を左右することから、酸強度の評価手法の確立が求められている。現在、Si-OH-AI 構造をもつクラスターモデルでの量子化学計算が、酸強度の評価に用いられることが多い。クラスターモデルを用いた場合、終端処理の方法が計算結果に影響を与えると考えられるが、この点に関して十分な検討がなされているとはいえない。そこで、このクラスターモデルの終端原子を変更しながら量子化学計算を行うことにより、酸強度の評価に適切なクラスターモデル構築法の確立を試みた。

【方法】 密度汎関数法による計算は Materials Studio 上の DMol3 モジュールによって行った。ゼオライト酸点近傍の構造として、Si-OH-AI 構造を基本とするクラスターモデルを作成し、Si および AI 原子の終端原子として、水素、水酸基、ハロゲン(F, Cl, Br, I)を利用した。構造最適化ならびにエネルギー計算においては、基底関数として DNP(6-31G**相当)ならびに交換相関関数として VWN を用いた。

【結果】 終端原子を変更して行った構造最適化における主要部分の角度、距離、電荷を表に示す。酸素の結合角は、水素・水酸基・フッ素では、110度程度の値となるが、その他のハロゲンでは、130~140度程度の値となった。その一方で、固体酸としての性質を発現する部位である水酸基において、終端原子を変更することによる電荷の変化量は、さほど大きくない。電子構造等の詳細に関しては、当日報告する。

式 派加州197年(による) / バノ 情色の変化								
Terminate	Angle(°)	Distance (Å)			Mulliken Charge			
	Si-O-Al	Si-O	Al-O	О-Н	Н	О	Si	Al
Н	110.581	1.716	1.947	0.975	0.339	-0.640	0.642	0.344
ОН	112.773	1.743	1.884	0.977	0.349	-0.666	1.395	0.980
F	106.690	1.723	1.857	0.977	0.362	-0.654	1.667	1.270
Cl	131.646	1.681	1.948	0.988	0.373	-0.643	1.136	0.747
Br	140.328	1.689	1.954	0.998	0.352	-0.674	1.561	1.181
I	137.475	1.703	1.968	0.998	0.347	-0.663	1.371	1.171

表 終端原子の違いによるクラスター構造の変化