2P01

Numerical Analysis of Radiation Induced Radicals in Foods

Hiromi KAMEYA¹, Mitsuko UKAI², Hideo Nakamura² and Yuhei SHIMOYAMA¹

¹Soft-matter Physics Laboratory, Muroran Institute of Technology (Muroran 053-8585)

²Department of Food Science, Hokkaido University of Education (Hakodate 040-8567)

(Introduction **)** The γ -ray irradiation sterilizes foods effectively. Electron spin resonance (ESR) spectroscopy has been applied as a detecting method of irradiated foods. In the present study, we analyzed the radical behavior of the irradiated pepper under the heat-treatment process by ESR. To evaluate the radical decay during heating, we defined a time-dependent master equation. Based upon the general solution of the equation, we evaluated the time constant of the radical decay through the nonlinear least squares method.

[Method]Upon heating, quantity of radicals decreases with a speed $\dot{\Phi}$ that is proportional to the residual quantity at a certain time. An ordinary differential equation (1) can describe the radical system varying with time.

(1)
$$\frac{\mathrm{d}\Phi}{\mathrm{d}t} = -\frac{1}{\tau_{\mathrm{d}}}\Phi$$

where τ_{d} is a time constant for the radical decay. Using the variable separation method, with the initial condition of $\Phi(t=0) = \Phi_{0}$ and the boundary condition $\Phi(t=\infty) = \Phi_{\infty}$:

(2)
$$\Phi = \Phi_0 e^{-\frac{t}{\tau_d}} + \Phi_0$$

Eq. (2) described the decay fashion of radicals under the heating procedure. For the sake of Φ_0 and Φ_{∞} are non-zero values, we have to employ the nonlinear least squares method to determine τ_d rigorously.

【Results and discussion】 Figure 1 shows an ESR signal of the black pepper as irradiated

for 50 kGy. It consists of four signal components, a sextet centered at g = 2.0(hyperfine interactions of Mn2+ ion), a singlet at the same g-value (organic free radical), a singlet at g = 4.0 (Fe3+ ion) and side peaks near g = 2.0. (see the insert of Fig. 1: organic free radical) The S1 and S2 signals are quite specific for the irradiated pepper. Figure 2 shows the change of the side peaks of irradiated (50 kGy) pepper by the heat-treatment (0 to 10 min). Although a strong radical intensity was presented before heating, the peak heights of S1 and S2 decayed dramatically by the heat-treatment. The estimation resulted in $\tau_d = 1.8$ min for the time constant for the thermal decay process.

Fig. 2. Decay of side peaks.