1P05

超高速化量子分子動力学計算に基づくプラズマディスプレイ用 MgO 保護膜からの二次電子放出能予測方法の開発

○ 芹澤和実¹、大沼宏彰¹、菊地宏美¹、北垣昌規²、鈴木 愛³、Riadh Sahnoun¹、
 古山通久¹、坪井秀行¹、畠山 望¹、遠藤 明¹、高羽洋充¹、Carlos Del Carpio¹、
 Ramesh C. Deka¹、久保百司⁴、梶山博司²、篠田 傳²、宮本 明^{1,3}

 ¹東北大学大学院工学研究科応用化学専攻 (〒980-8579 仙台市青葉区荒巻字青葉 6-6-11-1302)
 ²広島大学大学院先端物質科学研究科(〒739-8530 東広島市鏡山 1-3-1)
 ³東北大学未来科学技術共同研究センター(〒980-8579 仙台市青葉区荒巻字青葉 6-6-10)
 ⁴東北大学大学院工学研究科附属エネルギー安全科学国際研究センター (〒980-8579 仙台市青葉区荒巻字青葉 6-6-11-701)

【緒言】プラズマディスプレイは今後ますますの大画面化・高画質化が期待されている。しかし、これに伴い駆動電力の増加が懸念されることから低消費電力化が求められている。これに対し、図1に示すような発光セルに用いられている MgO 保護膜の二次電子放出能を向上させることが有効である。また、この二次電子は希ガスイオンが MgO 表面に衝突する時、Auger 中性化過程によって放出されると考えられる[1]。

現在、高い二次電子放出能を持つ保護膜の設計のために、二 次電子放出係数(γ値)の測定や状態密度からの理論的算出[2]が なされている。しかし測定されたγ値は希ガス種に対し傾向が同様 であるものの、その絶対値は統一的でない。また UPS 等より得ら れた状態密度を用いて算出したγ値は、希ガス衝突が表面に与え る影響の反映が困難である。そこで発表者らは量子論に基づくγ 値の算出方法を開発し、MgO 表面への希ガス衝突時のγ値算 出に応用した。

【計算方法】当研究室で開発した超高速化量子分子動力学計 算手法を用いて、電界加速された Ne⁺の MgO(001)表面への衝 突を想定したシミュレーションを行った。図2に計算モデルを示 す。図2のように Ne 原子に 30~600 V での加速を想定し 30~600 eV の運動エネルギーを与え MgO(001)表面の O 原子に衝突さ せた。MgO 表面の最下層は固定した。この衝突シミュレーショ ンにおいて、量子化学計算より得た状態密度と(1)式[2]を用い て各初速に対する二次電子放出係数γ値を算出した。

 $\gamma = \frac{\int P_e(\varepsilon)\rho_c(\varepsilon)\rho_v(\varepsilon)d\varepsilon}{\int \rho_c(\varepsilon)\rho_v(\varepsilon)d\varepsilon}$ (1)

ここでeは電子のエネルギー[eV]、 ρ_e および ρ_v はそれぞれ伝 導帯、価電子帯の状態密度[-]、 P_e は電子の表面からの離脱 確率[-]を意味する。

【結果と考察】 1. MgO 表面の電子状態 図 2 に示した MgO

図1 PDPの発光セルの模式図

表面モデルの構造最適化を行った。得られた表面の上方(衝突側)3層の部分状態密度(PDOS)を図3に示す。図3より、MgOの価電子帯は主にO2p軌道、伝導帯の下端はMg3s軌道で構成されることが示された。

2. Ne⁺衝突時の二次電子放出係数 最適構造の MgO 表面モデル を用いて Ne⁺衝突シミュレーションを行った。このシミュレーション で得られた状態密度と(1)式を用いて各初速に対しγ値を算出した。 図4に算出したγ値(計算値) と、これに対応した実験結果[3](測定

値)を示す。図 4 に示すように、Ne⁺の加速電圧の増加 に対して計算値、測定値ともに増加する傾向を示した。 よって加速電圧の増加に伴いγ値が増加することが理 論的に示された。また開発した予測方法の妥当性が示 された。次に、加速電圧の増加に伴いγ値が増加する 原因について考察する。

 3. Ne⁺衝突が表面に与える影響
 図 5 に 50 V および
 Sol

 300 V で加速された Ne⁺が表面 O に最接近した瞬間の
 部分状態密度を示す。図3と比較すると、図5の(a)、(b)
 ともに価電子帯の上方に O 2p 軌道由来の分子軌道が
 -1

 現れた。また、この分子軌道は 50 V での加速による衝
 突より 300 V のほうが高エネルギー側に現れている。図
 6に加速電圧 300 V において Ne⁺が表面 O に最接近し
 ごの分子軌道な 50 V での加速による衝

 6に加速電圧 300 V において Ne⁺が表面 O に最接近し
 た瞬間の、この分子軌道を示す。図 6 のように、この分子軌道は
 Ne⁺か

 Ne 2p 軌道と表面 O 2p 軌道との反結合性軌道、および表面 O 2p
 軌道と周辺 O 2p 軌道との反結合性軌道によって構成されているこ

 とが明らかにされた。このことから Ne⁺が表面 O に接近するほど、
 また表面が歪むほど、反結合性の相互作用が強まり、この分子軌

 道は高エネルギー側にシフトすると考えられる。よって高速に衝突
 するほどこの分子軌道が不安定化し、電子放出に対してエネルギー

 ー1
 の場面の

として、希ガス接近による軌道間の相互作用や、衝突による表面構造の変化の影響が示唆された。

【結言】 MgO 保護膜の二次電子放出能の量子論に基づいた予測方法を開発した。また、Ne⁺の MgO 表面への衝突を想定したシミュレーションにより、衝突速度とγ値の関係が示された。これより、衝突速度が大きいほど 観測されるγ値が大きくなるということが量子論に基づき示された。これは Ne⁺の衝突時、MgO 表面の O 由来の 分子軌道を不安定化し、エネルギー的に電子放出に優位な準位を形成することが要因であると示唆された。

【参考文献】

[1] 篠田 傳, プラズマディスプレイ材料技術の最前線, ㈱ シーエムシー出版 (2007).

- [2] Y. Motoyama and F. Sato, IEEE Trans. Plasma Sci., 34, pp. 336-342 (2006).
- [3] H. Kajiyama et al., Proc. 14th Int. Display Workshops, pp. 799-802 (2007).