## Study on Electrical Structure and Conductivity of Ti Doped LiFePO<sub>4</sub>

## <u>Yang LIU</u><sup>(a)</sup>, Ryuji MIURA<sup>(a)</sup>, Ai SUZUKI<sup>(b)</sup>, Hideyuki TSUBOI<sup>(a)</sup>, Nozomu HATAKEYAMA<sup>(a)</sup>, Akira ENDOU<sup>(a)</sup>, Hiromitsu TAKABA<sup>(a)</sup>, Momoji KUBO<sup>(a)</sup>, Akira MIYAMOTO<sup>(b),(a)</sup>

<sup>(a)</sup>Graduate School of Engineering, Tohoku University, 6-6, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan

<sup>(b)</sup>New Industry Creation Hatchery Center, Tohoku University, 6-6-10-205 Aoba, Aramaki, Aobaku, Sendai 980-8579, Japan

1. Introduction: LiFePO<sub>4</sub> and doped LiFePO<sub>4</sub> is known as electrode material for Li ion

batteries because of high Li capacity. In this study, we predicted the electric conductivity of LiFePO<sub>4</sub> and Ti doped LiFePO<sub>4</sub> based on tight-binding calculation.

**2. Methods:** We optimized the structure of calculation model by using density functional theory calculation. Then we calculate the electrical structure of the LiFePO<sub>4</sub> model by original tight binding quantum chemistry calculation code "New-Colors", and estimated the electric conductivity by "Colors-Cond".

**3. Results and Discussion:** Figure 1 shows the calculation model of Ti-doped LiFePO<sub>4</sub>. Figure 2 shows the partial density of states (PDOS). An impurity level derived from Ti 3d appeared between the top of valence and bottom of conduction band. Table 1 shows the estimated and measured electric conductivity.[1] The estimated electric conductivity of pure LiFePO<sub>4</sub> agreed with the experimental data. Compared with pure LiFePO<sub>4</sub>, Ti-doped LiFePO<sub>4</sub> has higher electric conductivity.



Fig.2 PDOS (1) Fe site doped LiFePO<sub>4</sub> (2) Li site doped LiFePO<sub>4</sub>

Table 1 Electrical Conductivity Calculation Result

| Model               | Calc. (S/cm)          | Expt. (S/cm)         |
|---------------------|-----------------------|----------------------|
| LiFePO <sub>4</sub> | 3.32×10 <sup>-8</sup> | 10 <sup>-9</sup> [1] |
| Ti doped (Li site)  | 1.62×10 <sup>-1</sup> | _                    |
| Ti doped (Fe site)  | 8.89×10 <sup>-4</sup> | —                    |

## References

[1] HU Guo-rong, Trans. Nonferrous Met. SOC . China 17(2007) 296-300.

2P20