

J. Technology and Education, Vol.21, No.2, 2014

- 81 -

J. Technology and Education, Vol.21, No.2, pp.81-88 (2014)

General Paper

Technical Computing Systems in Chemistry

Michael P. McCann

Coastal Carolina Community College (Jacksonville, NC 28546-6816, USA)

mccannmp@gmail.com

(Received November 2, 2014; Accepted December 1, 2014)

Abstract

 Some freely available computer algebra systems (CAS) and technical computing software is explored which may be of use to chemists.

Keywords: upper-division undergraduate, graduate education / research, physical chemistry, calculator-based learning, computer-based
learning, computational chemistry, gases, kinetic-molecular theory, mathematics / symbolic mathematics, physical properties, theoretical
chemistry

 The use of computer algebra systems, CAS, and chemistry
has been addressed. [1,2] It was tempting to title this paper,
“Variations on a Theme by Noggle and Wood.” [3] The
authors demonstrated an elegant use of Mathematica [4] to
solve an equation of state for vapor pressure and boiling point.
For the occasional user, Mathematica is an expensive piece of
software.

 There are a number of free alternatives. The oldest of all
computer algebra systems is Maxima. [5] It started out in the
late 1960's as Macsyma at the Massachusetts Institute of
Technology. Maxima is freely available under the General
Public License, GPL. [6] There are some versions of Maxima
with a nice graphical user interface, GUI, such as wxMaxima.
[7] Other free CAS include Sage, [8] Axiom, [9] and
Mathomatic [10] to mention a few.

 Though not a CAS, Octave [11] was developed by a
chemical engineer and uses matrices to do numerical
simulations. Julia [12] is a language on a virtual machine for
technical computing. Finally, the latest calculators come with a
CAS.

 Maxima, Octave, Julia and the CAS on an HP-50g calculator
were used with the Peng Robinson equation [13] to calculate
the vapor pressure and normal boiling point of nitrogen gas.

𝑝 =
𝑅𝑅

𝑉𝑚 − 𝑏 −
𝑎𝑎

𝑉𝑚2 + 2𝑏𝑉𝑚 − 𝑏2

where

𝑅 = 0.082056

𝑎 =
0.457235𝑅2𝑅𝑐2

𝑝𝑐

𝑏 =
0.077796𝑅𝑅𝑐

𝑝𝑐

𝑎 = �1 + 𝜅�1 − �𝑅 𝑅𝑐⁄ ��
2
.

For nitrogen

𝑅𝑐 = 126.15K

𝑝𝑐 = 33.5atm

𝜅 = 0.44.

The Gibbs free energy is minimized using [14]

𝑝�𝑉𝑔𝑔𝑔 − 𝑉𝑙𝑙𝑙𝑙𝑙𝑙� −�𝑝 (𝑉,𝑅)𝑑𝑉 = 0

http://bigjohn.ce.fukui-nct.ac.jp/journal/

- 82 -

Since the Peng Robinson equation is cubic with regard to
volume, when solving the equation for volume, three solutions
can be obtained. The smallest volume is that of the liquid,
while the largest volume is that of the gas.

 The Maxima version (PengRob.wxm) is quite similar to the
Mathematica version of Noggle and Wood. [15] There is one
significant difference. Maxima uses Newton's method to find
roots of an equation. This involves finding the derivative of the
original equation. The Maxima command “solve” was never
able to find the roots. A routine was added which used the
secant method [16] to find roots. This worked quite well but
was not quite as simple as the Mathematica [17] command
“FindRoot”.

Box 1

Maxima script

/*
Joseph H. Noggle and Robert H. Wood, "Calculation of Vapor
Pressure Using
 Mathematica," Journal of Chemical Education, Vol. 69, No. 10
(October 1992) pgs. 810-811.

Ding-Yu Peng and Donald B. Robinson, "A New Two-Constant
Equation of State,"
 Ind. Eng. Chem. Fundam., Vol. 15, No. 1 (1976) pgs. 59-64.
*/
Time1:elapsed_real_time()$
load(newton1)$
/*
Gas Constant
*/
R:0.0820574$
accuracy:1e-4$
MaxIt:100$
ratprint:false$
/*
Temperature
*/
T:120.0$
Vmin:0.05$
Vmax:0.35$
/*
Nitrogen
*/
Tc:126.19$
Pc:33.53367$
omega: 0.040$
kappa: 0.37464 + 1.54226*omega - 0.26992*omega^2$
b:0.07780*R*Tc/Pc$
chop(ex):=
if numberp(ex) and abs(ex) < 5.0e-15 then 0
elseif mapatom(ex) then ex
else map(chop,ex)$
alpha(T):=(1+kappa*(1-sqrt(T/Tc)))^2$
a(T):=(0.45724*(R^2)*(Tc^2)/Pc)*alpha(T)$

pf(vm,T):=R*T/(vm-b)-a(T)/(vm*(vm+b)+b*(vm-b))$
wxplot2d(pf(vm,T), [vm, Vmin, Vmax]);
vre(p,T):= sort(float(map(rhs,realpart(solve(
[pf(vm,T)-p = 0], vm)))))$
vf(p,T):=[lmax(vre(p,T)),lmin(vre(p,T))]$
fmin(p,T):=(vg:first(vf(p,T)), vl:second(vf(p,T)),
 chop(float(p*(vg-vl)- first(quad_qags
(pf(v,T), v, vl, vg)))))$
p1: 23.0$
p2: 26.0$
if fmin(p1,T) < fmin(p2,T) then (xlower:p1,
 xupper:p2) else (xlower:p2, xupper:p1)$
VaporPressure: xupper$
i:1$
while ((abs((xupper - xlower) / 2)
 > accuracy or notequal(fmin(VaporPressure,T),0)) and i <=
MaxIt)
do (VaporPressure: xupper - (xupper - xlower)
 * fmin(xupper,T) / (fmin(xupper,T) - fmin(xlower,T)),
 xlower: xupper, xupper: VaporPressure, i:i+1)$
fpprintprec:4$
VaporPressure;
p:1.0$
T1:70.0$
T2:80.0$
if fmin(p,T1) < fmin(p,T2) then (xlower:T1, xupper:T2)
 else (xlower:T2, xupper:T1)$
BoilingPoint: xupper$
i:1$
while ((abs((xupper - xlower) / 2)
 > accuracy or notequal(fmin(p,BoilingPoint),0)) and i <=
MaxIt)
do
 (BoilingPoint: xupper - (xupper - xlower)
 * fmin(p,xupper) / (fmin(p,xupper) - fmin(p,xlower)),
 xlower: xupper, xupper: BoilingPoint, i:i+1)$
BoilingPoint;
Time2:elapsed_real_time()$
(Time2 - Time1) / 60;

The Octave version (PengRob.m) was similar to the
Maxima version and it too needed an added routine employing
the secant method to find the roots. You have to be careful
defining variables as the letter “a” could represent a scalar or a
matrix. The Julia version (PengRob.jl) worked well also.

Box 2

Octave script

clear -all
global time0;
global ElapsedTime;
time0 = clock ();
global R=0.082056;

J. Technology and Education, Vol.21, No.2, 2014

- 83 -

global T=120.0;
global Vmin=0.05;
global Vmax=0.35;
global Tc=126.19;
global Pc=33.53367;
global omega=0.040;
global kappa=0.37464 + 1.54226 * omega - 0.26992 *
omega^2;
global a=0.457235*(R^2)*(Tc^2)/Pc;
global b=0.07780*R*Tc/Pc;
global p=1.0;
global acc=1e-6;
global loops=100;

function retval = alpha(T)
 global kappa Tc
 retval =(1+kappa*(1-sqrt(T/Tc)))^2;
endfunction
function retval = pf(vm)
 global a b R T
 retval = R * T ./ (vm .- b) .- a * alpha(T) ./ (vm .*
(b .+ vm) .+ b * (-b .+ vm));
endfunction
x=linspace(Vmin,Vmax,500);
T=120.0;
plot(x, pf(x))
function retval = gfe(pm,Tm)
 global a b R T
 T = Tm;
 prp = [pm, pm*b-R*Tm, a*alpha(Tm) - 3*pm*b*b -
2*b*R*Tm, b*b*b*pm + b*b*R*Tm - a*b*alpha(Tm)];
 volpr = sort(roots(prp));
 volliq = volpr(1);
 volgas = volpr(3);
 [intgrl,ierror,nfneval] = quad ("pf", volliq, volgas);
 retval = pm*(volgas-volliq) - intgrl;
endfunction
p1=23.0;
p2=26.0;
T=120.0;
if (gfe(p1,T) < gfe(p2,T))
 xlower=p1;
 xupper=p2;
else
 xlower=p2;
 xupper=p1;
endif
NewPressure=xupper;
i=1;
while ((abs(xupper-xlower)/2 > acc) && (i<=loops) &&
(gfe(NewPressure,T) != 0))

 NewPressure = xupper - (xupper - xlower) *
gfe(xupper,T) / (gfe(xupper,T) -gfe(xlower,T));
 xlower = xupper;
 xupper = NewPressure;
 VaporPressure = NewPressure;
 i++;
endwhile
VaporPressure
p=1.0;
T1=70.0;
T2=80.0;
if (gfe(p,T1) < gfe(p,T2)) quit
 xlower=T1;
 xupper=T2;
else
 xlower=T2;
 xupper=T1;
endif
NewTemp=xupper;
i=1;
while ((abs(xupper-xlower)/2 > acc) && (i<=loops) &&
(gfe(p,NewTemp) !=0))
 NewTemp = xupper - (xupper - xlower) * gfe(p,xupper)
/ (gfe(p,xupper) -gfe(p,xlower));
 xlower = xupper;
 xupper = NewTemp;
 BoilingPoint = NewTemp;
 i++;
endwhile
BoilingPoint
ElapsedTime = etime (clock (), time0);
ElapsedTime

Box 3

Julia script

Julia program, "PengRob.jl"

tic()
using Roots
using Polynomial
using Winston
global VaporPressure
global BoilingPoint
const R = 0.082056
const T = 120.0
const Vmin = 0.05
const Vmax = 0.35
const Tc = 126.19
const Pc = 33.53367
const omega = 0.040
const kappa = 0.37464 + 1.54226 * omega - 0.26992 *
omega^2

http://bigjohn.ce.fukui-nct.ac.jp/journal/

- 84 -

const a = 0.457235*(R^2)*(Tc^2)/Pc
const b = 0.07780*R*Tc/Pc
const p = 1.0
const acc = 1e-6
const loops = 1000

function alpha(T)
 (1+kappa*(1-sqrt(T/Tc)))^2
end
function pf(Vol,Tptr)
 R*T/(Vol-b)-a*alpha(Tptr)/(Vol*(b+Vol)+b*(Vol-b))
end
x=linspace(Vmin,Vmax,500)
n = size(x, 1)
y = copy(x)
for i=1:n
 y[i]=pf(x[i],T)
end
plot(x,y)
function gfe(pm,Tm)
 fpr = Poly([pm, (pm*b-R*Tm), (a*alpha(Tm) - 3*pm*b*b -
2*b*R*Tm), (b*b*b*pm + b*b*R*Tm - a*b*alpha(Tm))])
 z,l = fzero(fpr)
 volliq = z[1]
 volgas = z[3]
 function lpf(x)
 R*Tm/(x-b)-a*alpha(Tm)/(x*(b+x)+b*(x-b))
 end
 intgrl = quadgk (lpf, volliq, volgas)
 return pm*(volgas-volliq) - intgrl[1]
end
p1=23.0
p2=26.0
if (gfe(p1,T) < gfe(p2,T))
 xlower=p1
 xupper=p2
else
 xlower=p2
 xupper=p1
end
NewPressure=xupper
i=1
while ((abs(xupper-xlower)/2 > acc) && (i<=loops) &&
(gfe(NewPressure,T) != 0))
 NewPressure = xupper - (xupper - xlower) * gfe(xupper,T) /
(gfe(xupper,T) -gfe(xlower,T))
 xlower = xupper
 xupper = NewPressure
 VaporPressure = NewPressure
 i += 1
end
@printf("Vapor pressure = %2.2f atm", VaporPressure)
print("\n\r")
T1=70.0
T2=80.0
if (gfe(p,T1) < gfe(p,T2))
 xlower=T1

 xupper=T2
else
 xlower=T2
 xupper=T1
end
NewTemp=xupper
i=1
while ((abs(xupper - xlower) / 2 > acc) && (i<=loops) &&
(gfe(p,NewTemp) !=0))
 NewTemp = xupper - (xupper - xlower) * gfe(p,xupper) /
(gfe(p,xupper) - gfe(p,xlower))
 xlower = xupper
 xupper = NewTemp
 BoilingPoint = NewTemp
 i += 1
end
@printf("Boiling point = %2.2f K", BoilingPoint)
print("\n\r")
toc()

 Writing a program using the CAS on a calculator was the
most difficult. Fortunately on the HP 50g calculator there is a
debugger [18] that can be used to write programs and also an
emulator [19] where the program can be run before transferring
it to the calculator. Writing the program on the calculator using
only the keys on the calculator and the LCD screen would have
been beyond one's patience. The calculator version (PengRob.s)
was the least elegant. The CAS on the calculator did have some
functions that saved some steps such as “∫” for integration
rather than having to write a routine to do the integration.

Only the script in Box 4 works on the HP calculator. The
other scripts, Boxes 1-3, the Maxima, Octave and Julia scripts
work on a computer and do not work on the HP calculator.

J. Technology and Education, Vol.21, No.2, 2014

- 85 -

Fig.1 Fig.2

Box 4

HP RPL program

%%HP: T(0)A(D)F(.);
@ You may edit the T(0)A(D)F(.) parts.
@ The earlier parts of the line are used by Debug4x.
@
@ This program uses an equation of state for a gas. In this case,
@ it is using the Peng-Robison equation. This equation is used
@ to calculate the vapor pressure at a particular temperature
@ and it also calculates the normal boiling point.
@
@ The constants used here are for nitrogen gas (N2)
@
@ This is based on the following paper:
@ "Calculation of Vapor Pressure Using Mathematica" by Joseph H.
@ Noggle and Robert H. Wood, Journal of Chemical Education, Vol.
@ 69, No. 10, October 1992, pgs. 810-811.

http://bigjohn.ce.fukui-nct.ac.jp/journal/

- 86 -

@
@ This program is written in User RPL for an HP50g calculator
@ in RPN mode. The calculator should not be in exact mode.
@ MODE CAS Approx (check) If you forget to do this, the
@ program will stop and ask to switch to approximate mode.
@
@ Michael P. McCann
@ 22 March 2013
<<
 { R T P X Vmin Vmax Tc Pc K ALPHA A B PF PvsV GasPlot EQ } PURGE
 { PPAR p1 p2 VRE VL VG FMIN IERR ACR XLOW XUP VapP BoilT } PURGE
 { FM1 FM2 T1 T2 TM1 } PURGE
 TICKS TM1 STO @ Start timing
 1E-6 ACR STO @ Desired accuracy
 23 P1 STO @ Lower pressure limit
 26 P2 STO @ Upper pressure limit
 70 T1 STO @ Lower temperature limit
 80 T2 STO @ Upper temperature limit
 P1 XLOW STO @ Variable used to find the root
 P2 XUP STO @ Variable used to find the root
 P1 VapP STO @ Vapor pressure
 120 T STO @ Initial temperature
 T BoilT STO @ Boiling temperature
 0.0820574 R STO @ Ideal Gas Constant
 1. P STO @ pressure
 1. VL STO @ volume of the liquid
 1. VG STO @ volume of the gas
 .05 Vmin STO @ minimum volume
 .35 Vmax STO @ maximum volume
 126.19 Tc STO @ critical temperature
 33.53367 Pc STO @ critical pressure
 .04 → ω @ omega (local variable)

 << @ function to calculate kappa
 ω SQ .26992 * NEG
 ω 1.54226 * +
 .37464 +
 >> K STO
 @ function to calculate 'b'
 .07780 R * Tc * Pc /
 >> B STO
 << → t @ function to calculate 'alpha(T)'
 << @ temperature should be on the stack
 t Tc / √ NEG 1 + @ 't' is local variable for temperature
 K * 1 + SQ
 >>
 >> 'ALPHA' STO

 << → t @ function to calculate 'a(T)'
 << @ temperature should be on the stack
 t ALPHA 0.45724 * @ 't' is local variable for temperature
 R SQ * Tc SQ * @ put 't' on stack, call 'alpha'
 Pc /
 >>
 >> 'A' STO

 << @ function to calculate pressure 'pf(V,T)'
 R T * X B - / @ 'X' is volume
 T A X B + X *
 X B - B * + / -
 >> 'PF' STO
 << @ function to plot P vs. V
 PF STEQ
 FUNCTION Vmin Vmax XRNG
 18 34 YRNG

J. Technology and Education, Vol.21, No.2, 2014

- 87 -

 ERASE (0.05,18)
 {(0.05,18) 8 "Volume" "Pressure"} AXES
 LABEL DRAX DRAW
 PICT RCL PvsV STO
 >> GasPlot STO
 GasPlot
 CLEAR

 << → ta pa @ temperature and pressure should be
 << @ be put on the stack before calling
 R ta * X B - / @ this function
 ta A X B + X *
 X B - B * + / - @ function to find the solutions,
 pa - X ZEROS @ or volume, where PF-p=0
 DUP SORT @ a list is returned
 HEAD 'VL' STO @ duplicate the list and sort
 REVLIST @ VL is the volume of the liquid
 HEAD 'VG' STO @ reverse sort copy the list
 VG VL - pa * VL VG R ta * X B - / ta ALPHA 0.45724 *
 R SQ * Tc SQ *
 Pc / X B + X * X B - B * + / - X ò -
 >> @ VG is the volume of the gas
 >> FMIN STO
 P1 'XLOW' STO
 P2 'XUP' STO
 T P1 FMIN 'FM1' STO
 T P2 FMIN 'FM2' STO
 IF FM1 FM2 <
 THEN P1 'XLOW' STO ; P2 'XUP' STO
 ELSE P1 'XUP' STO ; P2 'XLOW' STO
 END
 XUP 'VapP' STO @ find the vapor pressure at 120 K
 CLEAR
 DO XUP XUP XLOW - T XUP FMIN
 * T XUP FMIN T XLOW FMIN -
 / - 'VapP' STO
 XUP 'XLOW' STO ; VapP 'XUP' STO
 UNTIL XUP XLOW - 2 / ABS ACR <
 END
 1 'P' STO
 T1 'XLOW' STO
 T2 'XUP' STO
 T1 P FMIN 'FM1' STO
 T2 P FMIN 'FM2' STO
 IF FM1 FM2 <
 THEN T1 'XLOW' STO ; T2 'XUP' STO
 ELSE T1 'XUP' STO ; T2 'XLOW' STO
 END
 XUP 'BoilT' STO @ Find the normal boiling point at 1 atm
 CLEAR
 DO XUP XUP XLOW - XUP P FMIN
 * XUP P FMIN XLOW P FMIN -
 / - 'BoilT' STO
 XUP 'XLOW' STO ; BoilT 'XUP' STO
 UNTIL XUP XLOW - 2 / ABS ACR <
 END @ Display the results
 440 .5 BEEP ; TEXT ; CLEAR
 "Vapor Pressure = " CLLCD 3 DISP
 VapP STR " atm" + 4 DISP
 "Boiling Point = " 5 DISP
 BoilT STR " K" + 6 DISP
 "Elapsed Time = " 7 DISP
 TICKS TM1 - BR 8192 / 60 / STR " min" +
 8 DISP 0 WAIT
 CLEAR @Remove all the variables

http://bigjohn.ce.fukui-nct.ac.jp/journal/

- 88 -

 { R T P X Vmin Vmax Tc Pc K ALPHA A B PF PvsV GasPlot EQ } PURGE
 { PPAR P1 P2 VG VL VRE FMIN IERR ACR VapP BoilT } PURGE
 { FM1 FM2 XUP XLOW T1 T2 TM1 } PURGE
>> HOME PngRb STO @ Store as the RPL program "PngRb"

Table 1 compares the speed of execution of all four versions.

Table 1

Program version Execution time

Maxima (PengRob.wxm) 8.33 minutes

Octave (PengRob.m) 0.83 minutes

Julia (PengRob.jl) 7.89 seconds

HP 50g (PengRob.s) 38.37 minutes

 The Maxima, Julia, and Octave versions were run on a 2.4
GHz PC with a quad core processor (only one core was used)
with 8 GB of RAM under Fedora 17 Linux. The HP 50g
calculator runs a 75 MHz ARM processor and has 2.5 MB of
RAM. The HP 50g calculator does well compared to Maxima
on a computer considering the difference in their processor
speeds. Neither Octave nor Julia are CAS and thus are not
saddled with doing symbolic math so it isn't surprising that they
out perform Maxima. Julia seems to live up to its claims of
being quite fast.

 Each programming language / CAS has its own quirks and it
takes some time to get proficient writing a program in that
software package. Even with the debugger and emulator on a
computer, the calculator version was the most difficult to write.
Calculators seem to be a technological dead end. Once an
indispensable tool of scientists and engineers, most of their use
now is in the classroom. Neither Hewlett Packard nor Texas
Instruments has come out with a new calculator in years. The
HP 50g was introduced in 2006.

 There is some quite capable software and the price is right.
If I was teaching a physical chemistry class would I require my
students to learn one of these software packages? That is a
tough call. I have seen math majors balk at having to learn a
CAS. With all the difficulties that students have learning the
concepts of physical chemistry, learning one of the above
software packages would be an additional burden. A lab or two
exploring the capabilities of the above software as applied to
physical chemistry might be a nice idea.

References

(1) Hanson, Mervin P. Computer Algebra Systems in Physical

Chemistry. The Chemical Educator 1996 1(1) 1-21.

(2) Roussel, Marc R. Redesigning the Quantum Mechanics
Curriculum to Incorporate Problem Solving Using a
Computer Algebra System. J. Chem. Ed. 1999, 76(10),
1373.

(3) Noggle, Joseph H.; Wood, Robert H. Calculation of Vapor
Pressure Using Mathematica, J. Chem. Ed. October 1992
69(10), 810-811.

(4) http://www.wolfram.com/mathematica/

(5) http://maxima.sourceforge.net/

(6) https://www.gnu.org/licenses/gpl.html

(7) http://andrejv.github.io/wxmaxima/

(8) http://www.sagemath.org/

(9) http://www.axiom-developer.org/

(10) http://www.mathomatic.org/

(11) https://www.gnu.org/software/octave/

(12) http://julialang.org/

(13) Peng, Ding-Yu; Robinson, Donald B. A New Two-
Constant Equation of State, Ind. Eng. Chem. Fundam.
1976 15(1) 59-64.

(14) Noggle and Wood, op. cit.

(15) Noggle and Wood, op.cit.

(16) Numerical Recipies in C, The Art of Scientific Computing,
Press, William H.; Flannery, Brian P.; Teukolsky, Saul A.;
Vetterling, William T.; Cambridge University Press (1988)
pp 263-266.

(17) mathematica, op.cit.

(18) http://www.debug4x.com/

(19) http://www.hpcalc.org/details.php?id=3644

