
2P02

光異性化反応など 2.3 の反応機構の MOPAC-PM6 法による評価

〇染川賢一(鹿児島大名誉)、松山隆真、下茂徹朗(鹿児島大院理工) (〒890-0065 鹿児島市郡元 1-21-40)

【序】

光反応理論、β — ラクタム不斉合成そして歪み化での太陽光エネルギー蓄積で興味のもたれる 2-ピリドン体(1) とフォトピリドン体(2) との光異性化・逆反応プロセスの、不斉ホスト 3 等を用いた実験

と,主に PM5 法を用いた遷移状態 (TS) を含むエネルギーと立体化学変化の Molecular simulation(MS) は、前報 (1. BCSJ. 82, 1447 (2009), 2.JCCJ. 9, 79 (2010)) に報告した。励起一重項 1^* の非対称平衡と 3 とによる不斉反応化プロセス(Scheme1)、それに 2 の大きな歪みエネルギー 過程が明らかになった。一方最近リリースされた PM6 法の Accuracy はそのウェブに $B3LYP/6-31G^*$ と遜色ないように記されている。

本報では、PM6 法で Scheme 1 の溶液反応における Fig.1 の3プロセスの連続可視化での詳細な検討と、ホスト 3 (天然アミノ酸由来の 1-体) および Bach の不斉ラクタムホスト(4: R-体) が同じ(R)-2 を与える(Org. Lett. 3, 601 (2001)) 分子レベルの原因、また 3 プロセスと歪エネルギーへのピリドンの置換基と骨格変化(イソキノロンやペンタセンなど) の影響を、MSで明らかにする。

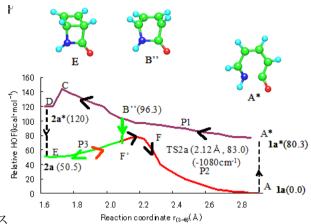
【実験結果と計算方法】

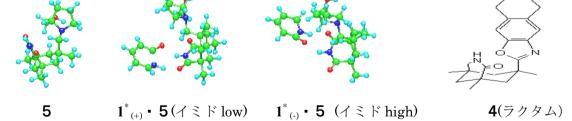
- 1. 3((l)-3) と反応の性質: X線データ、1 と 3 の 1:1 水素結合と光反応等は前報に記した。3 は分子内と、1 との分子間水素結合能をもつ。光化学反応では 1 と 3 の低濃度溶液光照射で、HPLC で 2 の不斉収率(13-43%ee) を得た。
- 2. 1) MO 計算:本報では主に WinMOPAC の後継ソフト SCIGRESS MO Compact 1.0.5(2009,富士 通)の PM6 法を用い, UVcal (nm) は CNDO/S 法による。 2) (l)-3 のアミド部還元体 (C=O \rightarrow CH $_2$) の 5 をワークススペース上で作成し、残っているイミド部の2種の水素結合による不斉能を調べた。

【MS 結果と考察】

- 1. 1から2への光4π-電子環状反応のエネルギーと反応プロセス
- 1) **1a** と **2a** のポテンシャルエネルギー差: PM6 法では 50.5 kcal/mol で、PM5 より B3LYP/6-31+g(d) 法(56.7 kcal/mol) に近い。その値はノルボルナジエン-クワドリシクラン(NBD-QC)系の2倍強である。 **1b** と **2b** 差は 54.5 kcal/mol でさらに大きい。
- 2) $\mathbf{1} \rightarrow \mathbf{2}$ プロセス: $\mathbf{1a}$ と $\mathbf{2a}$ の例を Fig.1 に示す。 $\mathbf{1}^*$ の \mathbf{r}_{3-6} ($\Rightarrow 2.8$ Å)減少による P1(紫: $\mathbf{A} \rightarrow \mathbf{D}$)、 $\mathbf{2}$ の \mathbf{r}_{3-6} ($\Rightarrow 1.8$ Å)増加による P2(赤: $\mathbf{E} \rightarrow \mathbf{F}$ (TS) $\rightarrow \mathbf{A}$)、そして P1 の B"($\mathbf{r}_{3-6} \Rightarrow 2$ Å)からの失活による $\mathbf{2}$ への P3(緑)プロセスからなる。そのエネルギー変化量から $\mathbf{1} \rightarrow \mathbf{2}$ ($\rightarrow \mathbf{1}$) は、B"とF'を経た振動レベルも異なるプロセスと判断される。また $\mathbf{1}^*$ はねじれた非平面の配座平衡体($\mathbf{4}_{1/36}$ の ± 20.7 °、,TS

エネルギー 9.0 kcal/mol(-877/cm)) であり、 $\mathbf{1}^*_{(+)}$ は(R)-2、 $\mathbf{1}^*_{(-)}$ は(S)-2 に移行する。




Fig. 1 1aと2a 異性化変換プロセス

2. 1·3 錯体の光励起反応による(R)-2 生成のプロセス

 $1*\cdot 3$ の励起錯体を経る $P1\sim P3$ プロセスが得られた。錯体のままであった。 1+3 の HOF(生成熱の和)をゼロとする相対 HOF 値 (kcal/mol)を() 内に示す。

 $A(1\cdot3)(-10.7:$ 水素結合), $A*(1*\cdot3)(70.8, (-13.4:$ 水素結合)), $E((R)\cdot2:44.6)$, F(TS:74.6(-907/cm)). イミド片側の大きな分子間水素結合と持続の(I)・3 分子内水素結合、そしてアミドカルボニルの極性が(I)・2 化の原因と理解される。

- 3. 4の検討、および 5 構造と、2種の 1·5 錯体の励起過程による(R)-2 と(S)-2 生成のプロセス
- 1) 4 利用の過程:前報同様 (*R*)・2 の生成をみた。 2) 5: 構造ではイミド部の分子内水素結合は消失し、OH 基はアミン部と接近している(図参照)。そこで 5 のイミド部の2種の 1*・5 の励起錯体を経る P1~P3 プロセスを作成した。両者はエネルギーではほとんど同じで,ラセミ体生成を示唆する。次に3の還元体 5、(R)・2 生成の A(1*(+)・5low), (S)・2 生成の A*(1*(-)・5 high)構造を示す。3 のイミド、および4のラクタムは前者と同様な立体効果で、(R)・2 を与えたと推定される。

4. 芳香族縮合環を持つイソキノロン、ペンタセン置換体等の異性化反応サイクル性の予測 関係の UVcal(nm、実測値), A, A*, E, F 等の相体 HOF エネルギー(kcal/mol)を示す。 考えられる、また期待する方向を示したい。 ($B*(r_{3-6}=2.1 \text{Å})$) (0内は不鮮明値)

化合物	UVcal(nm)		Α	A*	В*	B*-A*	E	F(TS)	F-E
4-フェニル-2-と	ピリドン	327	0	78.4	91.3	12.9	46.8	79.0	32.2
N-メチル-イソジ	F ノロン	383	0	74.3	91.6	16.3	30.7	75.7	45.0
ペンタセン	445(実	測 557)	0	65.0	(106.1)	(41.1)	33.5	(83.9)	(50.4)
6-CF ₃ -ペンタイ	セン	458	0	61.9	84.0	22.1	29.3	57.3	30.0
6-CF ₃ , 13-CH	₃ -ペンタ	'セン 468	0	59.8	78.4	18.6	25.5	44.5	19.0