2P15

A₂0-BO_{1.5}-SiO₂系ガラス(A = Li, Na, K)の 分子動力学シミュレーション

〇上原 友哉、澤口 直哉、佐々木 眞

室蘭工業大学大学院 工学研究科 機械創造工学系専攻(〒050-8585 室蘭市水元町 27 番1号)

【諸言】原子力発電所から排出される使用済み核燃料からウラン・プルトニウムを分離・回収後に残った高レベル放射性廃棄物は、ホウケイ酸塩ガラスと混合して、ガラス固化体として成形し、地層処分することが検討されている¹⁾。ガラス固化体には長期的な耐水性等の化学的な安定性が求められている。しかし、ガラスの構造はガラス中の原子配列が不規則なため未解明な部分が多い。当研究室では分子動力学(MD)法を用いて、ガラス固化体の基本組成を模した Na₂0-BO_{1.5}-SiO₂ 系ガラスの構造研究を進めてきた。本研究では、Na に加え Li, K を成分とする *A*₂0-BO_{1.5}-SiO₂ 系ガラス(*A* = Li, Na, K)の構造について MD 法による検討を行った。

【方法】対象組成は $y A_20-(1-y)$ (0.4 BO_{1.5}-0.6 SiO₂) で組成範囲 は 0.17 $\leq y \leq 0.29$ とした。計算ソフトウェアは MXDORTO²⁾、 アンサンブルは *NPT*とし、粒子数(*N*)は約 5000、圧力(*P*)は 0.1 MPa、設定温度(*T*)は 1500 K から徐々に冷却し 300 K のガラス モデルを作成した。

【結果·考察】Fig.1 にNa系のQ_a(SiO₄ユニットを架橋酸素数n で分 類)の解析結果を²⁹Si NMR により解析された結果と合わせて示す。 MD 法の結果は NMR の結果と同様に y の増加に伴い Q が減少、Q が 増加した(Li, Kも同様)。しかし MD 法と²⁹Si NMR から求めた数値 に差が見られた。Fig.2 に Na 系の 4 配位ホウ素 (B^{IV}) 比の解析結 果を¹¹B NMR により解析された結果と合わせて示す。MD 法からは Na 量の増加に伴い B[™]量が増減する傾向(Li, K も同様)が得られ た。しかし¹¹B NMR の結果は Na 量の増加に伴い B^{IV}量が減少し ている。しかし Na₂O-BO₁₅系の¹¹B NMR の結果³⁾より y < 0.17 において、B^Wが小さくなると予想される。BO(架橋酸素)比はyの 増加に伴い減少し、NBO(非架橋酸素)比は増加し、アルカリイオン 種の違いは表れなかった。リングサイズの分布にもアルカリイ オン種の違いはほとんどなく、 yの増加に伴い員数の大きいリ ングが切断されていた。以上より、Li, Na, K がガラスの局所構 造に与える影響に差が無かった。これはLi, Na, Kの価数が同じ なためであると考えられる。したがってガラス固化体に選択す るアルカリイオンの組成比は今回調査した Li, Na, K の範囲に おいて選択の自由度が高いと考えられる。

【参考文献】

- 1) 経済産業省,特定放射性廃棄物の最終処分に関する法律.
- 2) K. Kawamura, MXDORTO, JAPAN Chemistry Program Exchange, #29.
- 3) P.J. Bray, J. G. O' Keefe, *Phys. Chem.* 4, 37 (1963).

Fig. 1 Ratio of Q_n in y Na₂O - (1-y) (0.4BO_{1.5} - 0.6SiO₂) glasses.

