核・電子軌道(NOMO)理論を用いた 電子-陽電子消滅γ線スペクトルの理論研究

〇中井浩巳 ^{1, 2, 3, 4}、饗庭理沙 ¹、西澤宏晃 ^{2, 5}、五十幡康弘 ¹、WANG, Feng (王凤) ⁶ ¹早稲田大学 先進理工学部 化学・生命化学科(〒169-8555 東京都新宿区大久保 3-4-1) ²早稲田大学 理工学研究所(〒169-8555 東京都新宿区大久保 3-4-1)

3科学技術振興機構(JST)-CREST(〒332-0012 埼玉県川口市本町 4-1-8)

⁴京都大学 触媒·電池元素戦略拠点(ESICB) (〒615-8520 京都市西区大学桂) ⁵分子科学研究所 計算分子科学研究拠点(TCCI) (〒444-8585 岡崎市明大寺字西郷中 38) ⁶ Swinburne University of Technology, AUSTRALIA

【緒言】

電子の反粒子である陽電子は真空中では安定であるが、物質中の電子と衝突することにより、2本の γ 線を生成し対消滅する。 γ 線のエネルギーは 511 keV であるが、衝突前の電子(および陽電子)の運動量を反映して、ドップラー効果により $\Delta \epsilon$ だけ増減する。このドップラーシフトを利用すれば、分子 や材料などの特性を評価できる。たとえば、材料中の格子欠陥における消滅 γ 線スペクトルは、空孔 サイズの増加とともにドップラーシフトが小さくなる傾向がある。しかし、分子に対する消滅 γ 線スペクトルの測定は緒に就いたばかりであり、実験結果の解析には理論的なサポートが期待されている。最近、共同研究者の Feng ら[1]は、陽電子を平面波として取り扱い、消滅 γ 線スペクトルおよびドップラーシフトの理論計算を報告した。定性的には実験スペクトルの理解に利用できるが、ドップラーシフトの計算値は実験値と大きな隔たりがあった。我々の研究室では、分子場中の陽電子軌道を自己無 撞着場 (SCF) 的に求めることができる独自の方法、核・電子軌道 (NOMO) 法[2-4]を提案してきた。本研究では、NOMO 法を用いて消滅 γ 線スペクトルおよびドップラーシフトの理論的解釈を目指した。

【理論および計算方法】

波動関数 $\varphi^n(\mathbf{r})$ で表現された陽電子が、分子軌道 $\varphi^e_i(\mathbf{r})$ に属する電子と対消滅する際、全運動量 \mathbf{P} の γ 線が放出される確率振幅は次式で与えられる。

$$A_i(\mathbf{P}) = \int e^{-i\mathbf{P}\cdot\mathbf{r}} \varphi_i^e(\mathbf{r}) \varphi^n(\mathbf{r}) \, d\mathbf{r}$$
 (1)

|P|=P=0 のとき放出される 2 本の γ 線のエネルギーはともに 511 keV であるが、 $P\neq 0$ のときは次式で与えられる $\pm \Delta \varepsilon$ のエネルギーだけドップラーシフトする。

$$\varepsilon = \frac{Pc}{2}\cos\theta\tag{2}$$

ここで、 θ は γ 線と電子 – 陽電子対の重心速度の方向のなす角度である。 γ 線スペクトルの強度は、コンプトン散乱と類似した表式で与えられる。

$$w_i(\varepsilon, \mathbf{c}) = \int |A_i(\mathbf{P})|^2 \delta(\varepsilon - \frac{1}{2} \mathbf{P} \cdot \mathbf{c}) \frac{\mathrm{d}^3 P}{(2\pi)^3}$$
(3)

放出されるγ線の方向に対して平均化すると、

$$w_i(\varepsilon) = \frac{1}{c} \int_{2|\varepsilon|/c}^{\infty} \left| A_i(\mathbf{P}) \right|^2 \frac{P dP d\Omega_P}{(2\pi)^3} \tag{4}$$

となる。さらにすべての分子軌道からの寄与を合計することにより、電子-陽電子消滅 γ 線スペクトルが理論的に求められる。

$$w(\varepsilon) = \sum_{i} w_{i}(\varepsilon) \tag{5}$$

最終的には、(5)式のスペクトルの半値全幅から、ドップラーシフト $\Delta \varepsilon$ が求められる。

上記の理論的取り扱いにおいて、陽電子の波動関数をどのように表現すべきか、必ずしも自明でない。先行研究[1]では、平面波による進行波 (PWP) として取り扱われた。

$$\varphi^{n}(\mathbf{r}) = \varphi_{k}(\mathbf{r}) = e^{-i\mathbf{k}\cdot\mathbf{r}} \tag{6}$$

実際の計算には、 $|\mathbf{k}| = 0.05$ a.u.という値が用いられた。さらに、より簡便化するために、 $|\mathbf{k}| \approx 0$ とする低エネルギー (LEPWP) 近似による取り扱いも報告されている[1]。

$$\varphi_k(\mathbf{r}) \approx 1$$
 (5)

本研究では、NOMO 法により決定した定常状態の陽電子波動関数を用いた。計算方法は、いずれも Hartree-Fock (HF)レベルで、電子の基底関数は 6-311++G**、陽電子の基底関数は even-tempered スキームにより指数を決定した(8s8d)を用いた。

【結果と考察】

Fig. 1 に NOMO 法により得られた Ne 原子に対する消滅 γ 線スペクトルを示す。理論的にガウス型のスペクトルが得られ、これより半値幅が求められる。Table I には、希ガス (He-Kr) の消滅 γ 線スペクトルから見積ったドップラーシフト $\Delta \varepsilon$ と各軌道の寄与も示す。計算方法は、LEPWP, PWP, NOMO 法について比較している。LEPWP, PWP 法では、ドップラーシフトを過大評価する傾向がある。Krではいずれも実験値の 2 倍程度となっている。これらの方法ではいずれも、最外殻電子だけ

でなくより内殻の電子とも対消滅 する確率が高く計算されている。こ れは、陽電子波動関数を進行波とし て取り扱っているため、より内殻に 侵入しやすい取り扱いとなってい ると考えられる。一方、分子場を考 慮した NOMO 法では、実験値とま ずまず良い一致が見られた。さらに、 NOMO 法では最外殻電子の寄与が ほとんどであるという結果となっ た。すなわち、電子-陽電子消滅 γ 線スペクトルの理論的な取り扱い には、進行波よりも分子場を感じた 定常波とする方が良いことがわか った。NOMO 法においても多少実 験値を過大評価しているが、これは HF 法を用いているので電子波動関 数が硬く表現されているためと予 想される。そして、電子相関を考慮 することで、より良い一致が得られ るものと期待している。

当日は 2 原子分子やベンゼン置 換体の結果についても紹介する。

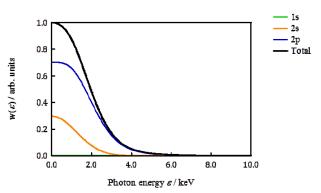


Figure 1. Theoretical electron-positron annihilation γ -ray spectrum for Ne and its orbital components.

Table I. Calculated Doppler shifts $\Delta\epsilon$ (in keV) of noble gas atoms (He - Kr). Energy (in keV) and strength (in % in parentheses) contributions of

He 1s 2.96 (100.0) 2.79 (100.0) 2.6 Total 2.96 2.79 Ne 1s 16.27 (6.6) 17.80 (6.6) 14.7	, ,
Total 2.96 2.79 Ne 1s 16.27 (6.6) 17.80 (6.6) 14.7	2.60 2.50 74 (0.5) - 33 (29.3) -
Ne 1s 16.27 (6.6) 17.80 (6.6) 14.7	74 (0.5) - 33 (29.3) -
` / / /	33 (29.3) -
` / / /	33 (29.3) -
2°	, ,
2s 3.54 (33.2) 3.54 (33.1) 2.8	00 (70 2)
2p 5.83 (60.2) 5.83 (60.2) 4.2	29 (70.2) -
Total 5.13 5.06	3.87 3.36
Ar 1s 22.24 (1.9) 32.84 (1.9) 43.3	73 (0.0) -
2s 7.90 (7.8) 8.04 (7.8) 5.0	00 (0.1) -
	99 (0.2) -
3s 2.37 (25.6) 2.58 (25.5) 1.8	38 (24.8) -
3p 3.75 (52.4) 3.75 (52.4) 2.8	39 (74.9) -
Total 3.83 3.89	2.66 2.30
Kr 1s 25.29 (0.7) 67.84 (0.7) 57.3	38 (0.0) -
2s 16.89 (2.4) 18.22 (2.4) 26.8	35 (0.0) -
2p 26.83 (3.7) 38.41 (3.7) 50.6	66 (0.0) -
3s 6.44 (6.2) 6.63 (6.2) 4.4	12 (0.1) -
3p 11.86 (11.4) 12.10 (11.4) 7.7	70 (0.3) -
3d 16.18 (19.5) 16.52 (19.5) 9.0	05 (0.7) -
4s 2.12 (14.1) 2.17 (14.1) 1.7	72 (21.8) -
4p 3.29 (42.0) 3.31 (42.0) 2.5	58 (77.0) -
Total 4.06 4.28	2.44 1.92

参考文献

- [1] F. Wang, L. Selvam, G. F. Gribakin, C. M. Surko, J. Phys. B, 43, 165207 (2010).
- [2] M. Tachikawa, K. Mori, H. Nakai, K. Iguchi, *Chem. Phys. Lett.*, **290**, 437 (1998).
- [3] H. Nakai, Int. J. Quant. Chem., 86, 511 (2002).
- [4] H. Nakai, Int. J. Quant. Chem. (Review), 107, 2849 (2007).
- [5] K. Iwata, R. G. Greaves, T. J. Murphy, M. D. Tinkle, C. M. Surko, *Phys. Rev. A*, **51**, 473 (1995).