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Objective: 
We discuss a technique to detect signals hidden in 

noises. We consider one observation, and concerned 

with cases that statistical approaches are difficult. 

 

Lock-in amplifier: 
A signal is defined, A*sin(nt+φ),  (1) 

where A, n, φ are the amplitude, frequency, phase. 

If reference waves are operated, we get, 

A*sin(nt+φ)*sin(nt)=(A/2){cos(2nt+φ)+cos(φ)}, (2) 

A*sin(nt+φ)*cos(nt)=(A/2){sin(2nt+φ)-sin(φ)}. (3) 

The DC term is invariable for t in (2); thus, if the noise 

is uniform, the DC and phase are detected as, 

(A/2)*{cos2(φ)+sin2(φ)}0.5, tan(φ)=sin(φ)/cos(φ). (4) 

Because; Σt→∞[CC*Rd(t)+C*A*sin(nt+φ)]*sin(nt) 

=C*(A/2)*cos(φ),  (5) 

C+CC=1, S/N ratio: dB=-20*log10(C),  (6) 

Error ratio in case of 1 times measurement, data number 

is 10k. Horizontal scale is S/N ratio, [dB]. 

Blue is error [%] of the amplitude, and red is the phase. 

The amplifier is effective until -25 dB. 

 
Frequency scan: 
To detect frequency of the target wave, we consider a 

scan for reference waves. Including half periods into the 

scan, and we get followings. 

 
The target wave is 8 Hz, the phase is 22.5deg, S/N is 

-20dB, and data are 10k. The horizontal axis of this 

figure is the scan frequency [Hz]. The vertical is 

relative DC intensity. In the level of -20dB, the 

frequency is detected. 

 

Phase detection: 
In the same conditions, we try to detect the phase. 

 
The horizontal is the scan frequency [Hz]. The vertical 

is phase [deg]. The correct phase [deg] is got only in 

referencing true frequency (8Hz in the figure). Even if 

there is small error in the input waves, uncertain phase 

is got. 

 

Chopper Modulation: 
We define a chopper in discrete time, 

CP(t+1)=CP(t), (7) 

Using the chopper, an integration of sine is, 

I=∫0
π
sin(t)dt=2, J=∫0

π
sin(t)CP(t)dt~0, and, 

K=∫0
π
Rd(t)dt~0, L=∫0

π
Rd(t)CP(t)dt~0,  (8) 

It is necessary that integration is significant; 

|I| > max{|K|,|L|,|J|}.  (9) 

We consider 2 kinds of choppers; 

I=∫0
π
{C*sin(t)+CC*Rd(t)}dt 

-∫π
2π

{C*sin(t)+CC*Rd(t)}dt， 

J=∫0
π
{C*sin(t)+CC*Rd(t)}*CP(t)dt 

-∫π
2π

{C*sin(t)+CC*Rd(t)}*CP(t)dt, (10) 

Err=(4C-I)/(4C), {4 is expectation}.  (11) 

The necessary condition is, |I| > |J|.  (12) 

In case of 10k data, we get next figure. 



 
The horizontal is S/N in [dB], and the vertical is 

error %. The approach is effective until -33dB. The 

necessary is until -37dB. The approach doesn’t require 

special relation of triangular functions, and a 

numerical integration is necessary only; thus, any 

hidden-function can be detected. 

 

Detection of a Gaussian: 
We consider a Gaussian in [0,1]. It is defined as G(x; 

α,m)=exp{-α(x-m)2 }, α>0, G()>0 that has an 

expectation, ∫±∞G(x; α)dx=(π/α)0.5. We adopt α=20, 

m=0.5. The Gaussian and uniform random number are 

mixing of coefficient C in (10). 

On 10k data, detection of a Gaussian is, 

 
The precision of numerical integration is 0.16% for 

[0,1]. In the figure, the horizontal is S/N in [dB], and 

the vertical is error %. The effective S/N is -24dB, and 

the necessary condition is -31dB.  
 

Symmetric condition: 
We discuss symmetric condition for the mixing of 

Gaussian and random numbers. The characters are; 

1) for inversion of constant C, it is symmetric. 

2) at x=m, it is mirror symmetric, G(x)=G(-x). 

In case of 10k data, we get followings. 

 
This is the symmetric check. The vertical scale is 

error %, and the horizontal is S/N [dB]. Symmetry 

holds until -26dB. 

 
The red line is a mirror symmetric check, whose 

algorithm is; 

CP(t)=1 (0<θ-w<t<θ), 

CP(t)=-1 (θ<t<θ+w<1), w>0,  (13) 

IG=∫0,1{C*G(t;α,m)+CC*Rd(t)}*CP(t)dt/w. (14) 

The θ is scanned, and at IG(t)~0, a “t” is detected. 

The t corresponds with “m”. This is an important 

condition. When C=-20dB, we get that calculated {m, 

C} are {0.46, 0.0398}, and the expectation is {0.50, 

0.0396}. In case of C=-26dB, the “m” is uncertain 

between [0.45, 0.5]; however, on 100k data, it 

converges to 0.488. The condition is weaker against 

noises than that of the symmetry. 

 

Sufficient check based on Gaussian product: 
Gaussian product is a Gaussian; i.e.; 

A1exp{-α1(x-c1)
2}* A2exp{-α2(x-c2)

2} 

=A3exp{-α3(x-c3)
2},  (15) 

u1=0.5/α1, u2=0.5/α2, 

R=1.0/(u1+u2),  v=u1u2R, 

B=(u2c1+u1c2)R,  D=(u2c1
2+u1c2

2)R, 

α3=0.5/v,  A3=A1A2exp{(B2-D)α3}.  (16) 

Thus; by using (17), β can be scanned. 

IH=∫0,1{C*G(t;α,m)+CC*Rd(t)}*G(t;β,m)dt, (17) 

Where, C=A1, A2=1,c1=c2=m. 

We get followings for 10k and 1M data. The α1 is 20, 

m=0.5, and C is -6.02dB. 

 
The vertical is {(π/α3)

0.5-IH}2, and the horizontal is β. 

Certainly, the exponent of hidden Gaussian is detected. 

The scanning hasn’t good S/N. 

 

Conclusion: 
We discuss a modulation of Lock-in amplifier, and 

show an approach to detect a Gaussian hidden in noises. 

The approach is effective for one measurement. 


