2P12 A detection technique for signals hidden in noises: the Lock-in amplifier and the modulation approaches

○Toru YAGI¹, Junko KAMBE¹, Tomoo AOYAMA², Umpei NAGASHIMA³

¹⁾ Department of Communication and Bussiness, Edogawa University.

²⁾Center for Research in Isotopes and Environment Dynamics, University of Tsukuba.

³⁾Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST),

Objective:

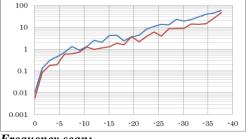
We discuss a technique to detect signals hidden in noises. We consider one observation, and concerned with cases that statistical approaches are difficult.

Lock-in amplifier:

A signal is defined, A*sin(nt+ φ), (1) where A, n, φ are the amplitude, frequency, phase. If reference waves are operated, we get, A*sin(nt+ φ)*sin(nt)=(A/2){cos(2nt+ φ)+cos(φ)}, (2) A*sin(nt+ φ)*cos(nt)=(A/2){sin(2nt+ φ)-sin(φ)}. (3) The DC term is invariable for t in (2); thus, if the noise is uniform, the DC and phase are detected as, (A/2)*{cos²(φ)+sin²(φ)}^{0.5}, tan(φ)=sin(φ)/cos(φ). (4) Because; $\Sigma t \rightarrow \infty$ [CC*Rd(t)+C*A*sin(nt+ φ)]*sin(nt) =C*(A/2)*cos(φ), (5) C+CC=1, *S/N ratio*: dB=-20*log10(C), (6)

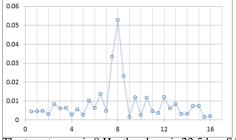
Error ratio in case of 1 times measurement, data number is 10k. Horizontal scale is S/N ratio, [dB].

Blue is error [%] of the amplitude, and red is the phase. The amplifier is effective until -25 dB.



Frequency scan:

To detect frequency of the target wave, we consider a scan for reference waves. Including half periods into the scan, and we get followings.

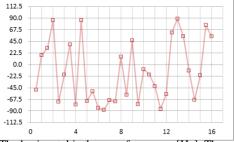


The target wave is 8 Hz, the phase is 22.5deg, S/N is -20dB, and data are 10k. The horizontal axis of this

figure is the scan frequency [Hz]. The vertical is relative DC intensity. In the level of -20dB, the frequency is detected.

Phase detection:

In the same conditions, we try to detect the phase.

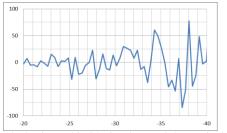


The horizontal is the scan frequency [Hz]. The vertical is phase [deg]. The correct phase [deg] is got only in referencing true frequency (8Hz in the figure). Even if there is small error in the input waves, uncertain phase is got.

Chopper Modulation:

We define a chopper in *discrete* time, CP(t+1)=CP(t),(7)Using the chopper, an integration of sine is, $I = \int_{0}^{\pi} \sin(t) dt = 2, J = \int_{0}^{\pi} \sin(t) CP(t) dt \sim 0, \text{ and,} \\ K = \int_{0}^{\pi} Rd(t) dt \sim 0, L = \int_{0}^{\pi} Rd(t) CP(t) dt \sim 0,$ (8)It is necessary that integration is significant; $|I| > max\{|K|, |L|, |J|\}.$ (9) We consider 2 kinds of choppers; $I=\int_0^{\pi} \{C^*\sin(t)+CC^*Rd(t)\}dt$ $-\int_{\pi}^{2\pi} \{C^*\sin(t) + CC^*Rd(t)\}dt,\$ $J = \int_0^{\pi} \{C^* \sin(t) + CC^* Rd(t)\} * CP(t) dt$ $-\int_{\pi}^{2\pi} \{C^*\sin(t) + CC^*Rd(t)\} * CP(t)dt,$ (10) $Err=(4C-I)/(4C), \{4 \text{ is expectation}\}.$ (11)The necessary condition is, $|\mathbf{I}| > |\mathbf{J}|$. (12)

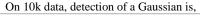
In case of 10k data, we get next figure.

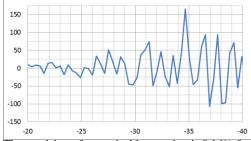


The horizontal is S/N in [dB], and the vertical is error %. The approach is effective until -33dB. The necessary is until -37dB. *The approach doesn't require special relation of triangular functions*, and a numerical integration is necessary only; thus, any hidden-function can be detected.

Detection of a Gaussian:

We consider a Gaussian in [0,1]. It is defined as G(x; α,m)=exp{- $\alpha(x-m)^2$ }, $\alpha>0$, G()>0 that has an expectation, $\int \pm \infty G(x; \alpha) dx = (\pi/\alpha)^{0.5}$. We adopt $\alpha=20$, m=0.5. The Gaussian and uniform random number are mixing of coefficient C in (10).

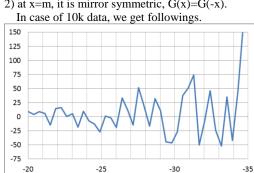




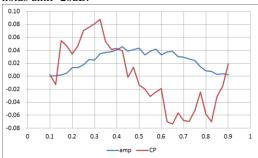
The precision of numerical integration is 0.16% for [0,1]. In the figure, the horizontal is S/N in [dB], and the vertical is error %. The effective S/N is -24dB, and the necessary condition is -31dB.

Symmetric condition:

We discuss symmetric condition for the mixing of Gaussian and random numbers. The characters are; 1) for inversion of constant C, it is symmetric. 2) at x=m, it is mirror symmetric, G(x)=G(-x).



This is the symmetric check. The vertical scale is error %, and the horizontal is S/N [dB]. Symmetry



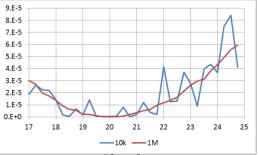
The red line is a mirror symmetric check, whose algorithm is;

 $CP(t)=1 (0 < \theta - w < t < \theta),$

 $CP(t)=-1 (\theta < t < \theta + w < 1), w > 0, (13)$ $IG=J_{0,1}\{C*G(t;\alpha,m)+CC*Rd(t)\}*CP(t)dt/w. (14)$ The θ is scanned, and at IG(t)~0, a "t" is detected. The t corresponds with "m". This is an important condition. When C=-20dB, we get that calculated {m, C} are {0.46, 0.0398}, and the expectation is {0.50, 0.0396}. In case of C=-26dB, the "m" is uncertain between [0.45, 0.5]; however, on 100k data, it converges to 0.488. The condition is weaker against noises than that of the symmetry.

Sufficient check based on Gaussian product:

 $\begin{array}{l} \mbox{Gaussian product is a Gaussian; i.e.;} \\ A_1 exp\{-\alpha_1(x-c_1)^2\}^* A_2 exp\{-\alpha_2(x-c_2)^2\} \\ = A_3 exp\{-\alpha_3(x-c_3)^2\}, \mbox{(15)} \\ u1=0.5/\alpha_1, u2=0.5/\alpha_2, \\ R=1.0/(u1+u2), v=u1u2R, \\ B=(u2c_1+u1c_2)R, D=(u2c_1^2+u1c_2^2)R, \\ \alpha_3=0.5/v, A_3=A_1A_2 exp\{(B^2-D)\alpha_3\}. \mbox{(16)} \\ Thus; by using (17), \beta can be scanned. \\ IH=\int_{0,1} \{C^*G(t;\alpha,m)+CC^*Rd(t)\}^*G(t;\beta,m)dt, \mbox{(17)} \\ Where, C=A_1, A_2=1, c_1=c_2=m. \\ We get followings for 10k and 1M data. The α_1 is 20, $m=0.5$, and C is -6.02dB. \\ \end{array}$



The vertical is $\{(\pi/\alpha_3)^{0.5}$ -IH $\}^2$, and the horizontal is β . Certainly, the exponent of hidden Gaussian is detected. The scanning hasn't good S/N.

Conclusion:

We discuss a modulation of Lock-in amplifier, and show an approach to detect a Gaussian hidden in noises. The approach is effective for one measurement.