局所ユニタリー変換を用いた

効率的な2成分相対論法の GAMESS への実装

〇中嶋 裕也¹, 清野 淳司², 中井 浩巳^{1,2,3,4} 1早稲田大学先進理工学部化学·生命化学科 (〒169-8555 東京都新宿区大久保 3-4-1) ²早稲田大学理工学研究所(〒169-8555 東京都新宿区大久保 3-4-1) ³JST-CREST (〒332-0012 埼玉県川口市本町 4-1-8) 4京都大学 ESICB (〒612-8520 京都府京都市西京区京都大学桂)

【緒言】相対論効果は重元素を含む分子の構造、電子状 態, 化学的性質を精度よく得るために必須である。 我々 はこれまで、4 成分 Dirac 法と同等の精度かつ非相対論 的手法 (NR) と同程度の時間で計算可能な高精度 2 成 分相対論法,局所ユニタリー変換-無限次 Douglas-Kroll -Hess (LUT-IODKH) 法を開発してきた [1-5]。本研究で はこれらのエネルギー及びグラジエント計算を量子化 学計算パッケージ GAMESS [6] へ実装した。本手法は次 の公式リリースにて公開される予定である。

【理論と実装】LUT-IODKH 法では,相対論効果の局所 Table 1. Capabilities of the LUT-IOTC method. 性を利用することで4成分 Dirac ハミルトニアンを部分 系 (原子) ごとにブロック対角化する。部分系間の相互 作用領域の相対論変換は,各部分系で定義したユニタリ ー変換を組み合わせることで行う。グラジエント計算で は,部分系が原子であるため相互作用領域のみ相対論変 換を行えばよく, 効率的に変換できる。実装では, IODKH 法と等価で GAMESS へ既に実装されている無 限次 two-component (IOTC) 法に LUT 法を適用した。

Figure.1にLUT-IOTC法を用いる計算のインプットフ ァイル例を示す。\$CONTRL ネームリスト内で用いる相 対論的ハミルトニアンを選択する (relwfn = LUT-IOTC)。 Table 1 に LUT-IOTC と組み合わせて用いることが可能 な計算手法の一部を示す。当研究室で開発および実装されて きた分割統治法 (DC) [7]と共に用いることで、相対論的ハミ ルトニアンの生成から波動関数計算まで、一貫した線形スケ ーリング計算を可能とする。

【パフォーマンス】Table 2 に重元素を含む分子の全エネルギ Diff. ーを示す。LUT と IOTC とのエネルギー差は最大 0.036 millihartree であり精度よく計算されている。Figure 2 に DFT Figure 2. Frequencies of diatomic molecules.

による二原子分子の振動数と実験値の差 (%) を示す。LUT により 実験値との差が最大 6.3%まで減少し、相対論効果の寄与が大きい。 Figure 3 に DC-LUT 法による計算時間のスケーリングを示す。 れより、相対論法による電子相関計算をほぼ線形スケーリング で 実行できることがわかる。

【参考文献】[1] J. Seino, H. Nakai, J. Chem. Phys. 136, 244102 (2012). [2] J. Seino, H. Nakai, J. Chem. Phys. 137, 144101 (2012). [3] J. Seino, H. Nakai, J. Chem. Phys. 139, 034109 (2013) [4] Y. Nakajima, J. Seino, H. Nakai, J. Chem. Phys. 136, 244107 (2013). [5] Y. Nakajima, J. Seino, H. Nakai, J. Chem. Theory Comput. in press. [6] M. W. Schmidt, K. K. Baldridge, J. A. Boatz et al. J. Comput. Chem. 14, 1347 (1993). [7] M. Kobayashi and H. Nakai, Phys. Chem. Chem. Phys. 14, 7629 (2012).

<pre>\$contrl scftyp=rhf runtype=energy relwfn=LUT-IOTC \$end</pre>							
\$basis gbasis=SPKrTZC \$end							
Somple input for cis-Platin							
Cnv 2							
Pt	78.0	0.00000	0.00000	-0.12244			
Cl	17.0	0.00000	1.81826	1.46113			
N	7.0	0.00000	1.59816	-1.56285			
H	1.0	0.82604	1.63808	-2.15006			
Н	1.0	0.00000	2.39652	-0.92766			
\$end							

Figure 1. Sample for LUT-IOTC calculation.

Energy	SCF, MP2, CI, CC,		
	EOMCC excitation, (TD-)DFT		
Gradient	SCF, MP2, CI, DFT, (TD-)DFT		
Others	semi-numerical Hessian,		
	divide-and-conquer		

Table 2. Total energy (hartree) of molecules.

	67 ()			
Mol.	LUT	IOTC	Diff.*		
HBr	-2605.103327	-2605.103330	0.003		
HI	-7113.436631	-7113.436630	-0.001		
HAt	-22874.860692	-22874.860674	-0.018		
At ₂	-45748.596737	-45748.596701	-0.036		
(HI)10	-71134.321733	-71134.321755	0.022		
*D'ff					

*Difference of energy in millihartree.

Figure 3. Scaling of DC-LUT.